
PDF Version of
User's Guide

Zoltan Home Page

Zoltan
Developer's Guide

Zoltan:
Data-Management Services for
Parallel Applications

User's Guide

Erik Boman (SNL)
Karen Devine (SNL)
Robert Heaphy (SNL)
Bruce Hendrickson (SNL)
William F. Mitchell (NIST)
Matthew St. John (SNL)
Courtenay Vaughan (SNL)

Sandia National Laboratories (SNL)
P.O. Box 5800
Albuquerque, NM 87185-1111

National Institute of Standards and Technology (NIST)
100 Bureau Dr. Stop 8910
Gaithersburg, MD 20899-8910

Zoltan User's Guide, Version 1.52

Introduction

Project Motivation
The Zoltan Toolkit
Terminology
Zoltan Design

Zoltan Release Notes

Using the Zoltan Library

System Requirements
Data Types for Object IDs
Building the Library
Building Applications

Zoltan Interface Functions

Error Codes
General Zoltan Interface Functions
Load-Balancing Functions
Functions for Adding Items to a Decomposition
Migration Functions
Ordering Functions

Zoltan User's Guide

file:///F|/docs/Zoltan_html/ug_html/ug.html (1 of 3) [12/1/2003 12:11:36 PM]

http://www.sandia.gov/Main.html
http://www.sandia.gov/Main.html
http://www.sandia.gov/search.html
http://www.sandia.gov/News.htm
http://www.sandia.gov/Contacting.htm
http://www.sandia.gov/Working.htm
http://www.sandia.gov/Solution.htm
http://www.sandia.gov/About.htm
http://www.cs.sandia.gov/~kddevin/Zoltan_pdf/ug.pdf
http://www.cs.sandia.gov/~kddevin/Zoltan_pdf/ug.pdf
file:///F|/docs/Zoltan_html/Zoltan.html
file:///F|/docs/Zoltan_html/dev_html/dev.html
file:///F|/docs/Zoltan_html/dev_html/dev.html
http://www-sccm.stanford.edu/~boman/
http://www.cs.sandia.gov/~kddevin
http://www.cs.sandia.gov/~bahendr
http://math.nist.gov/~mitchell

Application-Registered Query Functions

General Zoltan Query Functions
Migration Query Functions

Zoltan Parameters and Output Levels

General Parameters
Debugging Levels

Load-Balancing Algorithms

Load-Balancing Parameters
Recursive Coordinate Bisection (RCB)
Recursive Inertial Bisection (RIB)
Hilbert Space-Filling Curve (HSFC) Partitioning
Refinement Tree Based Partitioning
ParMETIS (graph partitioning and repartitioning)
Jostle (more graph partitioning and repartitioning)
Octree/Space-Filling Curve (SFC) Partitioning

Ordering Algorithms

Nested Dissection by METIS/ParMETIS

Data Services and Utilities

Building Utilities
Dynamic Memory Management
Unstructured Communication
Distributed Data Directories

Examples of Library Usage

General Usage
Load-Balancing
Migration
Query Functions

FORTRAN Interface

Compiling Zoltan
Compiling Applications
FORTRAN API
FORTRAN 77
System-Specific Remarks

Backward Compatibility with Earlier Versions of Zoltan

Zoltan User's Guide

file:///F|/docs/Zoltan_html/ug_html/ug.html (2 of 3) [12/1/2003 12:11:36 PM]

References

Index of Interface and Query Functions

Copyright (c) 2000,2001,2002, Sandia National Laboratories.
The Zoltan Library and its documentation are released under the GNU Lesser General
Public License (LGPL). See the README file in the main Zoltan directory for more
information.

[Zoltan Home Page | Next: Introduction]

Zoltan User's Guide

file:///F|/docs/Zoltan_html/ug_html/ug.html (3 of 3) [12/1/2003 12:11:36 PM]

http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html
file:///F|/docs/Zoltan_html/Zoltan.html

Zoltan User's Guide | Next | Previous

Introduction

Project Motivation
The Zoltan Toolkit
Terminology
Zoltan Design

Project Motivation

Over the past decade, parallel computers have been used with great success in many scientific simulations. While
differing in their numerical methods and details of implementation, most applications successfully parallelized to date are
"static" applications. Their data structures and memory usage do not change during the course of the computation. Their
inter-processor communication patterns are predictable and non-varying. And their processor workloads are predictable
and roughly constant throughout the simulation. Traditional finite difference and finite element methods are examples of
widely used static applications.

However, increasing use of "dynamic" simulation techniques is creating new challenges for developers of parallel
software. For example, adaptive finite element methods refine localized regions the mesh and/or adjust the order of the
approximation on individual elements to obtain a desired accuracy in the numerical solution. As a result, memory must be
allocated dynamically to allow creation of new elements or degrees of freedom. Communication patterns can vary as
refinement creates new element neighbors. And localized refinement can cause severe processor load imbalance as
elemental and processor work loads change throughout a simulation.

Particle simulations and crash simulations are other examples of dynamic applications. In particle simulations, scalable
parallel performance depends upon a good assignment of particles to processors; grouping physically close particles
within a single processor reduces inter-processor communication. Similarly, in crash simulations, assignment of
physically close surfaces to a single processor enables efficient parallel contact search. In both cases, data structures and
communication patterns change as particles and surfaces move. Re-partitioning of the particles or surfaces is needed to
maintain geometric locality of objects within processors.

We developed the Zoltan library to simplilfy many of the difficulties arising in dynamic applications. Zoltan is a
collection of data management services for unstructured, adaptive and dynamic applications. It includes a suite of parallel
partitioning algorithms, data migration tools, distributed data directories, unstructured communication services, and
dynamic memory management tools. Zoltan's data-structure neutral design allows it to be used by a variety of applications
without imposing restrictions on application data structures. Its object-based interface provides a simple and inexpensive
way for application developers to use the library and researchers to make new capabilities available under a common
interface.

The Zoltan Toolkit

The Zoltan Library contains a number of tools that simplify the development and improve the performance of parallel,
unstructured and adaptive applications. The library is organized as a toolkit, so that application developers can use as little
or as much of the library as desired. The major packages in Zoltan are listed below.

A suite of dynamic load balancing and parallel repartitioning algorithms; switching between algorithms is easy,
allowing straightforward comparisons of algorithms in applications.

●

Data migration tools for moving data from old partitions to new one.●

Distributed data directories: scalable (in memory and computation) algorithms for locating needed off-processor
data.

●

Zoltan User's Guide: Introduction

file:///F|/docs/Zoltan_html/ug_html/ug_intro.html (1 of 3) [12/1/2003 12:11:40 PM]

An unstructured communication package that insulates users from the details of message sends and receives.●

Dynamic memory management tools that greatly simplify dynamic memory debugging on state-of-the-art parallel
computers.

●

A sample application zdrive. It allows algorithm developers to test changes to Zoltan without having to run Zoltan
in a large application code. Application developers can use the zdrive code to see examples of function calls to
Zoltan and the implementation of query functions.

●

Terminology

Our design of Zoltan does not restrict it to any particular type of application. Rather, Zoltan operates on uniquely
identifiable data items that we can objects. For example, in finite element applications, objects might be elements or nodes
of the mesh. In particle applications, objects might be particles. In linear solvers, objects might be matrix rows.

Each object must have a unique global identifier (ID) represented as an array of unsigned integers. Common choices
include global numbers of elements (nodes, particles, rows, and so on) that already exist in many applications, or a
structure consisting of an owning processor number and the object's local-memory index. Objects might also have local
(to a processor) IDs that do not have to be unique globally. Local IDs such as addresses or local-array indices of objects
can improve the performance (and convenience) of Zoltan's interface to applications.

We use a simple example to illustrate the above terminology. In the figure below, a simple finite element mesh is
presented.

The blue and yellow shading indicates the mesh is partitioned for two processors. An application must provide
information about the current mesh and partition to Zoltan. If, for example, the application wants Zoltan to perform
operations on the elements of the mesh, it must provide information about the elements when Zoltan asks for object
information.

In this example, the elements have unique numbers assigned to them, as shown by the numbers in the elements. These
unique numbers can be used as global IDs in Zoltan. In addition, on each processor, local numbering information may be
available. For instance, the elements owned by a processor may be stored in arrays in the processor's memory. An
element's local array index may be provided to Zoltan as a local ID.

For geometric algorithms, the application must provide coordinate information to Zoltan. In this example, the coordinates
of the mid-point of an element are used.

For graph-based algorithms, information about the connectivity of the objects must be provided to Zoltan. In this example,

Zoltan User's Guide: Introduction

file:///F|/docs/Zoltan_html/ug_html/ug_intro.html (2 of 3) [12/1/2003 12:11:40 PM]

file:///F|/docs/Zoltan_html/dev_html/dev_driver.html

the application may consider elements connected if they share a face. The connections between elements, or edges of the
connectivity graph, are shown in red. Connectivity information is passed to Zoltan by specifying a neighbor list for an
object. The neighbor list consists of the global IDs of neighboring objects and the processor(s) currently owning those
objects.

The table below summarizes the information provided to Zoltan by an application for this finite element mesh.
Information about the objects includes their global and local IDs, geometry data, and graph data.

Object IDs Geometry Data Graph Data

Processor Global Local (coordinates) Neighbor Global ID List Neighbor Processor List

Blue 1 0 (0.8,2.9) 2 Blue

2 1 (1.7,2.9) 1,3 Blue,Blue

3 2 (2.5,2.9) 2,4 Blue,Yellow

Yellow 4 0 (2.0,2.1) 3,5 Blue,Yellow

5 1 (1.1,1.0) 4,6 Yellow,Yellow

6 2 (0.5,0.2) 5,7 Yellow,Yellow

7 3 (1.3,0.2) 6,8 Yellow,Yellow

8 4 (2.1,0.2) 7 Yellow

Zoltan Design

To make Zoltan easy to use, we do not impose any particular data structure on an application, nor do we require an
application to build a particular data structure for Zoltan. Instead, Zoltan uses a callback function interface, in which
Zoltan queries the application for needed data. The application must provide simple functions that answer these queries.

To keep the application interface simple, we use a small set of callback functions and make them easy to write by
requesting only information that is easily accessible to applications. For example, the most basic partitioning algorithms
require only four callback functions. These functions return the number of objects owned by a processor, a list of weights
and IDs for owned objects, the problem's dimensionality, and a given object's coordinates. More sophisticated
graph-based partitioning algorithms require only two additional callback functions, which return the number of edges per
object and edge lists for objects.

[Table of Contents | Next: Zoltan Release Notes | Previous: Table of Contents]

Zoltan User's Guide: Introduction

file:///F|/docs/Zoltan_html/ug_html/ug_intro.html (3 of 3) [12/1/2003 12:11:40 PM]

Zoltan User's Guide | Next | Previous

Release Notes

Release notes are available for the following releases of Zoltan:

Zoltan Release v1.52
Zoltan Release v1.5
Zoltan Release v1.3

Zoltan Release Notes v1.52

Zoltan v1.52 includes the following new capabilities:

List-based graph callback functions ZOLTAN_NUM_EDGES_MULTI_FN and
ZOLTAN_EDGE_LIST_MULTI_FN were added to mirror support and performance given by the list-based
geometric function ZOLTAN_GEOM_MULTI_FN.

●

Support for ParMETIS v3.1 was added.●

Minor bugs were addressed.●

Zoltan Release Notes v1.5

This section describes improvements to Zoltan in Version 1.5. Every attempt was made to keep Zoltan v1.3 backwardly
compatible with previous versions. Users of previous versions of Zoltan should refer to the Backward Compatibility
Notes.

Short descriptions of the following features are included below; follow the links for more details.

Partition remapping
Unequal Numbers of Partitions and Processors
Non-Uniform Partition Sizes
Zoltan Interface Updated
Robust HSFC Box Assign
Matrix Ordering
Performance Improvements
Bug Fixes

Partition Remapping

During partitioning, Zoltan v1.5 can renumber partitions so that the input and output partitions have greater overlap (and,
thus, lower data-migration costs). This remapping is controlled by Zoltan parameter REMAP. Experiments have shown
that using this parameter can greatly reduce data migration costs.

Unequal Numbers of Partitions and Processors

Zoltan v1.5 can be used to generate k partitions on p processors, where k is not equal to p. Function Zoltan_LB_Partition
(replacing Zoltan_LB_Balance) can generate arbitrary numbers of partitions on the given processors. The number of
desired partitions is set with parameters NUM_GLOBAL_PARTITIONS or NUM_LOCAL_PARTITIONS. Both partition

Zoltan User's Guide: Release Notes

file:///F|/docs/Zoltan_html/ug_html/ug_release.html (1 of 4) [12/1/2003 12:11:41 PM]

and processor information are returned by Zoltan_LB_Partition, Zoltan_LB_Box_PP_Assign, and
Zoltan_LB_Point_PP_Assign. New Zoltan query functions ZOLTAN_PARTITION_FN and
ZOLTAN_PARTITION_MULTI_FN return objects' partition information to Zoltan. Zoltan_LB_Balance can still be
used for k equal to p.

Non-Uniform Partition Sizes

Partition sizes for local and global partitions can be specified using Zoltan_LB_Set_Part_Sizes, allowing non-uniformly
sized partitions to be generated by Zoltan's partitioning algorithms.

Zoltan Interface Updated

To support the concept of partitions separate from processors, many new interface functions were added to Zoltan v1.5
(e.g., Zoltan_LB_Partition and Zoltan_Migrate). These functions mimic previous Zoltan functions (e.g.,
Zoltan_LB_Balance and Zoltan_Help_Migrate, respectively), but include both partition and processor information.
Both the new and old interface functions work in Zoltan v1.5. See the notes on Backward Compatibility.

Robust HSFC Box Assign

Function Zoltan_LB_Box_PP_Assign now works for the Hilbert Space-Filling Curve algorithm (HSFC), in addition to
the RCB and RIB algorithms supported in previous versions of Zoltan. Zoltan_LB_Point_PP_Assign continues to work
for HSFC, RCB and RIB.

Matrix Ordering

Zoltan v1.5 contains a matrix-ordering interface Zoltan_Order to ParMETIS' matrix-ordering functions. New
graph-based matrix-ordering algorithms can be easily added behind this interface.

Performance Improvements

Many performance improvements were added to Zoltan v1.5.

List-based callback functions have been added to Zoltan (ZOLTAN_GEOM_MULTI_FN,
ZOLTAN_PARTITION_MULTI_FN, ZOLTAN_OBJ_SIZE_MULTI_FN,
ZOLTAN_PACK_OBJ_MULTI_FN, and ZOLTAN_UNPACK_OBJ_MULTI_FN); these functions allow
entire lists of data to be passed from the application to Zoltan, replacing per-object callbacks.

●

Zoltan_Migrate now can accept either import lists, export lists, or both. It is no longer necessary to call
Zoltan_Invert_Lists or Zoltan_Compute_Destinations to get appropriate input for Zoltan_Migrate.

●

Zoltan v1.5 contains performance improvements within individual algorithms. We recommend users upgrade to
the latest version.

●

Bug Fixes

Bug fixes were made to Zoltan's algorithms and interface. Users of previous versions of Zoltan are encouraged to upgrade.

Zoltan User's Guide: Release Notes

file:///F|/docs/Zoltan_html/ug_html/ug_release.html (2 of 4) [12/1/2003 12:11:41 PM]

Zoltan Release Notes v1.3

This section describes improvements to Zoltan in Version 1.3. Every attempt was made to keep Zoltan v1.3 backwardly
compatible with previous versions. Users of previous versions of Zoltan should refer to the Backward Compatibility
Notes.

Short descriptions of the following features are included below; follow the links for more details.

More Data Services
New Hilbert Space-Filling Curve Partitioning
Support for Structured-Grid Partitioning
Support for ParMETIS v3.0
Performance Improvements
Zoltan Interface Updated
Improved Test Suite
Bug Fixes

More Data Services

Zoltan's mission has been widened beyond its original focus on dynamic load-balancing algorithms. Now Zoltan also
provides data management services to parallel, unstructured, and adaptive computations. Several packages of parallel data
services have been added and made available to application developers. These services include the following:

An unstructured communication package that simplifies complicated communication by insulating applications
from the details of message sends and receives.

●

A distributed data directory that allows applications to efficiently (in memory and time) locate off-processor data.●

A dynamic memory management package that simplifies debugging of memory allocation problems on
state-of-the-art parallel computers.

●

New Hilbert Space-Filling Curve Partitioning

Zoltan now includes a fast, efficient implementation of Hilbert Space-Filling Curve (HSFC) partitioning. This geometric
method also includes support for Zoltan_LB_Box_Assign and Zoltan_LB_Point_Assign functions.

Support for Structured-Grid Partitioning

Zoltan's Recursive Coordinate Bisection (RCB) partitioning algorithm has been enhanced to allow generation of strictly
rectilinear subdomains. This capability can be used for partitioning of grids for structured-grid applications. See parameter
RCB_RECTILINEAR_BLOCKS.

Support for ParMETIS v3.0

In addition to providing interfaces to ParMETIS v2.0 and PJostle, Zoltan now provides an interfaces ParMETIS v3.0. Full
support of ParMETIS v3.0's multiconstraint and multiobjective partitioning is included.

Performance Improvements

Performance of Zoltan's partitioning algorithms has been improved through a number of code optimizations and new
features. In addition, user parameter RETURN_LISTS can be used to specify which returned arguments are computed by

Zoltan User's Guide: Release Notes

file:///F|/docs/Zoltan_html/ug_html/ug_release.html (3 of 4) [12/1/2003 12:11:41 PM]

Zoltan_LB_Balance, allowing reduced work in partitioning. In the Recursive Coordinate Bisection (RCB) partitioning
algorithm, user parameters allow cut directions to be locked in an attempt to minimize data movement; see parameters
RCB_LOCK_DIRECTIONS and RCB_SET_DIRECTIONS.

Zoltan Interface Updated

Zoltan has adopted a more modular design, making it easier to use by applications and easier to modify by algorithm
developers. Names in the Zoltan interface and code are tied more closely to their functionality. Full backward
compatibility is supported for users of previous versions of Zoltan.

Improved Test Suite

The Zoltan test suite has been improved, with more tests providing greater code coverage and platform-specific answer
files accounting for differences due to computer architectures.

Bug Fixes

Some bug fixes were made to Zoltan's algorithms and interface. Users of previous versions of Zoltan are encouraged to
upgrade.

[Table of Contents | Next: Using the Zoltan Library | Previous: Introduction]

Zoltan User's Guide: Release Notes

file:///F|/docs/Zoltan_html/ug_html/ug_release.html (4 of 4) [12/1/2003 12:11:41 PM]

file:///F|/docs/Zoltan_html/dev_html/dev_test_script.html

Zoltan User's Guide | Next | Previous

Using the Zoltan library

This section contains information needed to use the Zoltan library with applications:

System requirements.
Data types for global and local IDs.
Instructions for building the Zoltan library.
Instructions for building applications that use Zoltan.

System Requirements

Zoltan was designed to run on parallel computers and clusters of workstations. In order to build and use Zoltan, you will
need:

ANSI C compiler.●

MPI library for message passing (version 1.1 or higher), such as MPICH or LAM.●

A Unix-like operating system (e.g., Linux or Solaris) and gmake (GNU Make) are recommended to build the
library.

●

A Fortran90 compatible compiler is required if you wish to use Zoltan with Fortran applications.●

Zoltan has been tested on a variety of platforms, including Linux, Solaris, Irix, and the ASCI Red Teraflop machine. If
you wish to use Zoltan on a non-Unix operating system, for example Windows NT or 2000, you will have to port Zoltan
yourself.

Data Types for Object IDs

Application query functions and application callable library functions use global and local identifiers (IDs) for objects. All
objects to be used in load balancing must have unique global IDs. Zoltan stores an ID as an array of unsigned integers.
The number of entries in these arrays can be set using the NUM_GID_ENTRIES and NUM_LID_ENTRIES parameters;
by default, one unsigned integer represents an ID. Applications may use whatever format is most convenient to store their
IDs; the IDs can then be converted to and from Zoltan's ID format in the application-registered query functions.

The following type definitions are defined in include/zoltan_types.h; they can be used by an application for memory
allocation, MPI communication, and as arguments to load-balancing interface functions and application-registered query
functions.

typedef unsigned int ZOLTAN_ID_TYPE;
typedef ZOLTAN_ID_TYPE *ZOLTAN_ID_PTR;
#define ZOLTAN_ID_MPI_TYPE MPI_UNSIGNED

In the Fortran interface, IDs are passed as arrays of integers since unsigned integers are not supported in Fortran. See the
description of the Fortran interface for more details.

The local IDs passed to Zoltan are not used by the library; they are provided for the convenience of the application and
can contain any information desired by the application. For instance, local array indices for objects may be passed as local
IDs, enabling direct access to object data in the query function routines. See the application-registered query functions for
more details. The source code distribution contains an example application zdrive in which global IDs are integers and
local IDs are local array indices. One may choose not to use local ids at all, in which case NUM_LID_ENTRIES may be
set to zero.

Some Zoltan routines (e.g., Zoltan_LB_Partition and Zoltan_Invert_Lists) allocate arrays of type ZOLTAN_ID_PTR
and return them to the application. Others (e.g., Zoltan_Order and Zoltan_DD_Find) require the application to allocate
memory for IDs. Memory for IDs can be allocated as follows:

Zoltan User's Guide: Library Usage

file:///F|/docs/Zoltan_html/ug_html/ug_usage.html (1 of 3) [12/1/2003 12:11:42 PM]

http://www-unix.mcs.anl.gov/mpi/
http://www.sandia.gov/ASCI/Red/
file:///F|/docs/Zoltan_html/dev_html/dev_driver.html

ZOLTAN_ID_PTR gids;
int num_gids, int num_gid_entries;
gids = (ZOLTAN_ID_PTR) ZOLTAN_MALLOC(num_gids * num_gid_entries *
sizeof(ZOLTAN_ID_TYPE);

The system call malloc may be used instead of ZOLTAN_MALLOC.

Building the Zoltan Library

The Zoltan library is implemented in ANSI C and can be compiled with any ANSI C compiler. Makefiles are included
with the source code; these makefiles require the GNU Make (gmake) utility. The top-level Makefile defines targets for
the Zoltan library and test driver programs in C and Fortran90. This Makefile need not be edited to build Zoltan. Instead,
environment-specific definitions are specified in the configuration file, Utilities/Config/Config.<platform>, where
<platform> specifies the particular platform for which Zoltan is being built. Paths to compilers, include files, and
libraries are defined in this file and are then read by the top-level Makefile. Examples of configuration files for Solaris,
Sandia's ASCI Red (tflop) computer, SGI workstations, and PCs running Linux are included in the Utilities/Config
subdirectory. A well-commented version of the configuration file, Utilities/Config/Config.generic, is also included; this
file can be used as a template for new environment-specific files. The variables in these files should be edited to reflect
the new system's environment.

The command for building Zoltan is shown below:

gmake [options] zoltan

where the options that may be specified are listed below.

Options to gmake:
 ZOLTAN_ARCH=<platform> Specify the target architecture for the Zoltan library. A corresponding file,

Utilities/Config/Config.<platform>, containing environment definitions for
<platform>, must be created in the Utilities/Config directory.

 YES_FORTRAN=1 Include Fortran support in the Zoltan library. By default, the Zoltan library is built
without the interface that allows use from Fortran applications. If this option is
specified, the Fortran interface is compiled and included in the library. Use of this
option requires that a Fortran 90 (or 95, or later) compiler is available.

As an alternative to typing the options on the gmake command line, they may be set as environment variables; e.g., if you
are using a C-shell (csh or tcsh), type

setenv ZOLTAN_ARCH <platform>

or if you are using a Bourne-type shell (e.g., sh or bash), type

ZOLTAN_ARCH = <platform>; export ZOLTAN_ARCH

The resulting library libzoltan.a, object files, and dependency files are stored in the directory Obj_<platform>.

Building Applications that use Zoltan

The library interface is described in the C include file include/zoltan_types.h; this file should be included in all application
source files that call Zoltan library routines. Similarly, Fortran applications must USE module zoltan and specify
Zoltan/Obj_<platform> as a directory to be searched for module information files. The application should then be linked
with the Zoltan library and its utility libraries by including

-lzoltan

in the linking command for the application. Communication within Zoltan is performed through MPI, so appropriate MPI
libraries must be linked with the application. Third-party libraries, such as ParMETIS and Jostle, must be also be linked
with the application if they were included in compilation of the Zoltan library. (A courtesy copy of ParMETIS is included
with the Zoltan distribution; Jostle must be obtained directly from http://www.gre.ac.uk/~jjg01/.)

For applications that used versions of Zoltan before Zoltan v.1.3, only minor updates to the application build process are

Zoltan User's Guide: Library Usage

file:///F|/docs/Zoltan_html/ug_html/ug_usage.html (2 of 3) [12/1/2003 12:11:42 PM]

file:///F|/docs/Zoltan_html/dev_html/dev_driver.html
http://www.gre.ac.uk/~jjg01/
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www.gre.ac.uk/~jjg01/
http://www.gre.ac.uk/~jjg01/

needed; see the section on backward compatibility of Zoltan.

[Table of Contents | Next: Zoltan Interface Functions | Previous: Zoltan Release Notes]

Zoltan User's Guide: Library Usage

file:///F|/docs/Zoltan_html/ug_html/ug_usage.html (3 of 3) [12/1/2003 12:11:42 PM]

Zoltan User's Guide | Next | Previous

Zoltan Interface Functions

An application calls a series of dynamic load-balancing library functions to initialize the load balancer, perform load
balancing and migrate data. This section describes the syntax of each type of interface function:

General Zoltan Interface Functions
Load-Balancing Interface Functions
Functions for Augmenting a Decomposition
Migration Interface Functions

Examples of the calling sequences for initialization, load-balancing, and data migration are included in the Initialization,
Load-Balancing, and Migration sections, respectively, of the Examples of Library Usage.

Error Codes

All interface functions, with the exception of Zoltan_Create, return an error code to the application. The possible return
codes are defined in include/zoltan_types.h and Fortran module zoltan, and are listed in the table below.

Note: Robust error handling in parallel has not yet been achieved in Zoltan. When a processor returns from Zoltan due to
an error condition, other processors do not necessarily return the same condition. In fact, other processors may not know
that the original processor has returned from Zoltan, and may wait indefinitely in a communication routine (e.g., waiting
for a message from the original processor that is not sent due to the error condition). The parallel error-handling
capabilities of Zoltan will be improved in future releases.

ZOLTAN_OK Function returned without warnings or errors.

ZOLTAN_WARN Function returned with warnings. The application will probably be able to continue to
run.

ZOLTAN_FATAL A fatal error occured within the Zoltan library.

ZOLTAN_MEMERR An error occurred while allocating memory. When this error occurs, the library frees
any allocated memory and returns control to the application. If the application then
wants to try to use another, less memory-intensive algorithm, it can do so.

Return codes defined in include/zoltan_types.h.

[Table of Contents | Next: Initialization Functions | Previous: Using the Library]

Zoltan User's Guide: Interface

file:///F|/docs/Zoltan_html/ug_html/ug_interface.html [12/1/2003 12:11:42 PM]

Zoltan User's Guide | Next | Previous

General Interface Functions

Functions used to initialize and manipulate Zoltan's data structures are described below:

Zoltan_Initialize
Zoltan_Create
Zoltan_Set_Param
Zoltan_Set_Param_Vec
Zoltan_Set_Fn
Zoltan_Set_<zoltan_fn_type>_Fn
Zoltan_Destroy

C: int Zoltan_Initialize (
 int argc,
 char **argv,
 float *ver);

FORTRAN: FUNCTION Zoltan_Initialize(argc, argv, ver)
INTEGER(Zoltan_INT) :: Zoltan_Initialize
INTEGER(Zoltan_INT), INTENT(IN), OPTIONAL :: argc
CHARACTER(LEN=*), DIMENSION(*), INTENT(IN), OPTIONAL :: argv
REAL(Zoltan_FLOAT), INTENT(OUT) :: ver

The Zoltan_Initialize function initializes MPI for Zoltan. If the application uses MPI, this function should be called after
calling MPI_Init. If the application does not use MPI, this function calls MPI_Init for use by Zoltan. This function is
called with the argc and argv command-line arguments from the main program, which are used if Zoltan_Initialize calls
MPI_Init. From C, if MPI_Init has already been called, the argc and argv arguments may have any value because their
values will be ignored. From Fortran, if one of argc or argv is omitted, they must both be omitted. If they are omitted, ver
does NOT have to be passed as a keyword argument.

Zoltan_Initialize returns the the Zoltan version number so that users can verify which version of the library their
application is linked to.

Arguments:
 argc The number of command-line arguments to the application.
 argv An array of strings containing the command-line arguments to the application.
 ver Upon return, the version number of the library.
Returned Value:
 int Error code.

C: struct Zoltan_Struct *Zoltan_Create (
 MPI_Comm communicator);

FORTRAN: FUNCTION Zoltan_Create(communicator)
TYPE(Zoltan_Struct), pointer :: Zoltan_Create
INTEGER, INTENT(IN) :: communicator

The Zoltan_Create function allocates memory for storage of information to be used by Zoltan and sets the default values
for the information. The pointer returned by this function is passed to many subsequent functions. An application may
allocate more than one Zoltan_Struct data structure; for example, an application may use several Zoltan_Struct
structures if, say, it uses different decompositions with different load-balancing techniques.

Zoltan User's Guide: General Zoltan Interface

file:///F|/docs/Zoltan_html/ug_html/ug_interface_init.html (1 of 4) [12/1/2003 12:11:43 PM]

Arguments:
 communicator The MPI communicator to be used for this Zoltan structure. Only those processors included in

the communicator participate in Zoltan functions. If all processors are to participate,
communicator should be MPI_COMM_WORLD .

Returned Value:
 struct Zoltan_Struct
*

Pointer to memory for storage of Zoltan information. If an error occurs, NULL will be returned
in C, or the result will be a nullified pointer in Fortran. Any error that occurs in this function is
assumed to be fatal.

C: int Zoltan_Set_Param (
 struct Zoltan_Struct *zz,
 char *param_name,
 char *new_val);

FORTRAN: FUNCTION Zoltan_Set_Param(zz, param_name, new_val)
INTEGER(Zoltan_INT) :: Zoltan_Set_Param
TYPE(Zoltan_Struct), INTENT(IN) :: zz
CHARACTER(LEN=*), INTENT(IN) :: param_name, new_value

Zoltan_Set_Param is used to alter the value of one of the parameters used by Zoltan. All Zoltan parameters have
reasonable default values, but this routine allows a user to provide alternative values if desired.

Arguments:
 zz Pointer to the Zoltan structure created by Zoltan_Create.

 param_name A string containing the name of the parameter to be altered. Note that the string is
case-insensitive. Also, different Zoltan structures can have different parameter values.

 new_val A string containing the new value for the parameter. Example strings include "3.154", "True",
"7" or anything appropriate for the parameter being set. As above, the string is case-insensitive.

Returned Value:
 int Error code.

C: int Zoltan_Set_Param_Vec (
 struct Zoltan_Struct *zz,
 char *param_name,
 char *new_val,
 int index);

FORTRAN: FUNCTION Zoltan_Set_Param_Vec(zz, param_name, new_val, index)
INTEGER(Zoltan_INT) :: Zoltan_Set_Param_Vec
TYPE(Zoltan_Struct), INTENT(IN) :: zz
CHARACTER(LEN=*), INTENT(IN) :: param_name, new_value
INTEGER(Zoltan_INT), INTENT(IN) :: index

Zoltan_Set_Param_Vec is used to alter the value of a vector parameter in Zoltan. A vector parameter is a parameter that
has one name but contains multiple values. These values are referenced by their indices, usually starting at 0. Each entry
(component) may have a different value. This routine sets a single entry (component) of a vector parameter. If you want
all entries (components) of a vector parameter to have the same value, set the parameter using Zoltan_Set_Param as if it
were a scalar parameter. If one only sets the values of a subset of the indices for a vector parameter, the remaining entries
will have the default value for that particular parameter.

Arguments:
 zz Pointer to the Zoltan structure created by Zoltan_Create.

Zoltan User's Guide: General Zoltan Interface

file:///F|/docs/Zoltan_html/ug_html/ug_interface_init.html (2 of 4) [12/1/2003 12:11:43 PM]

 param_name A string containing the name of the parameter to be altered. Note that the string is
case-insensitive. Also, different Zoltan structures can have different parameter values.

 new_val A string containing the new value for the parameter. Example strings include "3.154", "True",
"7" or anything appropriate for the parameter being set. As above, the string is case-insensitive.

 index The index of the entry of the vector parameter to be set. The default in Zoltan is that the first
entry in a vector has index 0 (C-style indexing).

Returned Value:
 int Error code.

C: int Zoltan_Set_Fn (
 struct Zoltan_Struct *zz,
 ZOLTAN_FN_TYPE fn_type,
 void (*fn_ptr)(),
 void *data);

FORTRAN: FUNCTION Zoltan_Set_Fn(zz, fn_type, fn_ptr, data)
INTEGER(Zoltan_INT) :: Zoltan_Set_Fn
TYPE(Zoltan_Struct), INTENT(IN) :: zz
TYPE(ZOLTAN_FN_TYPE), INTENT(IN) :: fn_type
EXTERNAL :: fn_ptr
<type-data>, OPTIONAL :: data

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

Zoltan_Set_Fn registers an application-supplied query function in the Zoltan structure. All types of query functions can
be registered through calls to Zoltan_Set_Fn. To register functions while maintaining strict type-checking of the fn_ptr
argument, use Zoltan_Set_<zoltan_fn_type>_Fn.

Arguments:
 zz Pointer to the Zoltan structure created by Zoltan_Create.

 fn_type The type of function being registered; see Application-Registered Query Functions for possible
function types.

 fn_ptr A pointer to the application-supplied query function being registered.
 data A pointer to user defined data that will be passed, as an argument, to the function pointed to by

fn_ptr. In C it may be NULL. In Fortran it may be omitted.
Returned Value:
 int Error code.

C: int Zoltan_Set_<zoltan_fn_type>_Fn (
 struct Zoltan_Struct *zz,
 <zoltan_fn_type> (*fn_ptr)(),
 void *data);

Zoltan User's Guide: General Zoltan Interface

file:///F|/docs/Zoltan_html/ug_html/ug_interface_init.html (3 of 4) [12/1/2003 12:11:43 PM]

FORTRAN: FUNCTION Zoltan_Set_<zoltan_fn_type>_Fn(zz, fn_ptr, data)
INTEGER(Zoltan_INT) :: Zoltan_Set_<zoltan_fn_type>_Fn
TYPE(Zoltan_Struct), INTENT(IN) :: zz
EXTERNAL :: fn_ptr
<type-data>, OPTIONAL :: data

An interface block for fn_ptr is included in the FUNCTION definition so that strict type-checking of
the registered query function can be done.

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

The interface functions Zoltan_Set_<zoltan_fn_type>_Fn, where <zoltan_fn_type> is one of the query function types,
register specific types of application-supplied query functions in the Zoltan structure. One interface function exists for
each type of query function. For example, Zoltan_Set_Num_Geom_Fn registers a query function of type
ZOLTAN_NUM_GEOM_FN. Each query function has an associated Zoltan_Set_<zoltan_fn_type>_Fn. A complete
list of these functions is included in include/zoltan.h.

Query functions can be registered using either Zoltan_Set_Fn or Zoltan_Set_<zoltan_fn_type>_Fn.
Zoltan_Set_<zoltan_fn_type>_Fn provides strict type checking of the fn_ptr argument; the argument's type is specified
for each Zoltan_Set_<zoltan_fn_type>_Fn. Zoltan_Set_Fn does not provide this strict type checking, as the pointer to
the registered function is cast to a void pointer.

Arguments:
 zz Pointer to the Zoltan structure created by Zoltan_Create.

 fn_ptr A pointer to the application-supplied query function being registered. The type of the pointer
matches <zoltan_fn_type> in the name Zoltan_Set_<zoltan_fn_type>_Fn.

 data A pointer to user defined data that will be passed, as an argument, to the function pointed to by
fn_ptr. In C it may be NULL. In Fortran it may be omitted.

Returned Value:
 int Error code.

Example:
The interface function
 int Zoltan_Set_Geom_Fn(struct Zoltan_Struct *zz, ZOLTAN_GEOM_FN (*fn_ptr)(),
 void *data);
registers an ZOLTAN_GEOM_FN query function.

C: void Zoltan_Destroy (
 struct Zoltan_Struct **zz);

FORTRAN: SUBROUTINE Zoltan_Destroy(zz)
TYPE(Zoltan_Struct), POINTER :: zz

Zoltan_Destroy frees the memory associated with a Zoltan structure and sets the structure to NULL in C or nullifies the
structure in Fortran. Note that Zoltan_Destroy does not deallocate the import and export arrays returned from Zoltan
(e.g., the arrays returned from Zoltan_LB_Partition); these arrays can be deallocated through a separate call to
Zoltan_LB_Free_Part.

Arguments:
 zz A pointer to the address of the Zoltan structure, created by Zoltan_Create, to be destroyed.

[Table of Contents | Next: Load-Balancing Functions | Previous: Zoltan Interface Functions]

Zoltan User's Guide: General Zoltan Interface

file:///F|/docs/Zoltan_html/ug_html/ug_interface_init.html (4 of 4) [12/1/2003 12:11:43 PM]

Zoltan User's Guide | Next | Previous

Load-Balancing Functions

The following functions are the load-balancing interface functions in the Zoltan library; their descriptions are included
below.

Zoltan_LB_Partition
Zoltan_LB_Set_Part_Sizes
Zoltan_LB_Eval
Zoltan_LB_Free_Part

For backward compatibility with previous versions of Zoltan, the following functions are also maintained. These functions
are applicable only when the number of partitions to be generated is equal to the number of processors on which the
partitions are computed. That is, these functions assume "partitions" and "processors" are synonymous.

Zoltan_LB_Balance
Zoltan_LB_Free_Data

C: int Zoltan_LB_Partition (
 struct Zoltan_Struct *zz,
 int *changes,
 int *num_gid_entries,
 int *num_lid_entries,
 int *num_import,
 ZOLTAN_ID_PTR *import_global_ids,
 ZOLTAN_ID_PTR *import_local_ids,
 int **import_procs,
 int **import_to_part,
 int *num_export,
 ZOLTAN_ID_PTR *export_global_ids,
 ZOLTAN_ID_PTR *export_local_ids,
 int **export_procs,
 int **export_to_part);

FORTRAN: FUNCTION Zoltan_LB_Partition(zz, changes, num_gid_entries, num_lid_entries, num_import,
import_global_ids, import_local_ids, import_procs, import_to_part, num_export, export_global_ids,
export_local_ids, export_procs, export_to_part)
INTEGER(Zoltan_INT) :: Zoltan_LB_Partition
TYPE(Zoltan_Struct), INTENT(IN) :: zz
LOGICAL, INTENT(OUT) :: changes
INTEGER(Zoltan_INT), INTENT(OUT) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT) :: num_import, num_export
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_procs, export_procs
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_to_part, export_to_part

Zoltan_LB_Partition invokes the load-balancing routine specified by the LB_METHOD parameter. The number of
partitions it generates is specified by the NUM_GLOBAL_PARTITIONS or NUM_LOCAL_PARTITIONS parameters.
Results of the partitioning are returned in lists of objects to be imported and exported. These arrays are allocated in
Zoltan; applications should not allocate these arrays before calling Zoltan_LB_Partition. The arrays are later freed
through calls to Zoltan_LB_Free_Part.

Arguments:

Zoltan User's Guide: Load-Balancing Interface

file:///F|/docs/Zoltan_html/ug_html/ug_interface_lb.html (1 of 6) [12/1/2003 12:11:44 PM]

 zz Pointer to the Zoltan structure, created by Zoltan_Create, to be used in this invocation of the
load-balancing routine.

 changes Set to 1 or .TRUE. if the decomposition was changed by the load-balancing method; 0 or
.FALSE. otherwise.

 num_gid_entries Upon return, the number of array entries used to describe a single global ID. This value is the
maximum value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries Upon return, the number of array entries used to describe a single local ID. This value is the
maximum value over all processors of the parameter NUM_LID_ENTRIES.

 num_import Upon return, the number of objects that are now assigned to this processor that were assigned to
other processors in the old decomposition (i.e., the number of objects to be imported to this
processor). If the value returned is -1, no import information has been returned and all import
arrays below are NULL (see the RETURN_LISTS parameter for more information).

 import_global_ids Upon return, an array of num_import global IDs of objects to be imported to this processor.
(size = num_import * num_gid_entries)

 import_local_ids Upon return, an array of num_import local IDs of objects to be imported to this processor.
(size = num_import * num_lid_entries)

 import_procs Upon return, an array of size num_import listing the processor IDs of the processors that owned
the imported objects in the previous decomposition (i.e., the source processors).

 import_to_part Upon return, an array of size num_import listing the partitions to which the imported objects are
being imported.

 num_export Upon return, the number of objects that were assigned to this processor in the previous
decomposition that are now assigned to other processors (i.e., the number of objects that must be
exported from this processor to other processors). If the value returned is -1, no export
information has been returned and all export arrays below are NULL (see the RETURN_LISTS
parameter for more information).

 export_global_ids Upon return, an array of num_export global IDs of objects to be exported from this processor.
(size = num_export * num_gid_entries)

 export_local_ids Upon return, an array of num_export local IDs of objects to be exported from this processor.
(size = num_export * num_lid_entries)

 export_procs Upon return, an array of size num_export listing the processor IDs of processors that will own
the exported objects in the new decomposition (i.e., the destination processors).

 export_to_part Upon return, an array of size num_export listing the partitions to which the exported objects are
being exported.

Returned Value:
 int Error code.

C: int Zoltan_LB_Set_Part_Sizes (
 struct Zoltan_Struct *zz,
 int global_num,
 int len,
 int *part_ids,
 int *wgt_idx,
 float *part_sizes);

FORTRAN: function Zoltan_LB_Set_Part_Sizes(zz,global_part,len,partids,wgtidx,partsizes)
integer(Zoltan_INT) :: Zoltan_LB_Set_Part_Sizes
type(Zoltan_Struct) INTENT(IN) zz
integer(Zoltan_INT) INTENT(IN) global_part,len,partids(*),wgtidx(*)
real(Zoltan_FLOAT) INTENT(IN) partsizes(*)

Zoltan_LB_Set_Part_Sizes is used to specify the desired partition sizes in Zoltan. By default, Zoltan assumes that all
partitions should be of equal size. With Zoltan_LB_Set_Part_Sizes, one can specify the relative (not absolute) sizes of
the partitions. For example, if two partitions are requested and the desired sizes are 1 and 2, that means that the first
partition will be assigned approximately one third of the total load. If the sizes were instead given as 1/3 and 2/3,

Zoltan User's Guide: Load-Balancing Interface

file:///F|/docs/Zoltan_html/ug_html/ug_interface_lb.html (2 of 6) [12/1/2003 12:11:44 PM]

respectively, the result would be exactly the same. Note that if there are multiple weights per object, one can (must)
specify the partition size for each weight dimension independently.

Arguments:
 zz Pointer to the Zoltan structure created by Zoltan_Create.

 global_num Set to 1 if global partition numbers are given, 0 otherwise (local partition numbers).
 len Length of the next three input arrays.

 part_ids Array of partition numbers, either global or local. (Partition numbers are integers starting from
0.)

 vwgt_idx Array of weight indices (between 0 and OBJ_WEIGHT_DIM-1). This array should contain all
zeros when there is only one weight per object.

 part_sizes Relative values for partition sizes; part_sizes[i] is the desired relative size of the vwgt_idx[i]'th
weight of partition part_ids[i].

Returned Value:
 int Error code.

C: int Zoltan_LB_Eval (
 struct Zoltan_Struct *zz,
 int print_stats,
 int *nobj,
 float *obj_wgt,
 int *ncuts,
 float *cut_wgt,
 int *nboundary,
 int *nadj);

FORTRAN: FUNCTION Zoltan_LB_Eval(zz, print_stats, nobj, obj_wgt, ncuts, cut_wgt, nboundary, nadj)
INTEGER(Zoltan_INT) :: Zoltan_LB_Eval
TYPE(Zoltan_Struct), INTENT(IN) :: zz
LOGICAL, INTENT(IN) :: print_stats
INTEGER(Zoltan_INT), INTENT(OUT), OPTIONAL :: nobj, ncuts, nboundary, nadj
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(vwgt_dim), OPTIONAL :: obj_wgt
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(ewgt_dim), OPTIONAL :: cut_wgt

Zoltan_LB_Eval evaluates the quality of a decomposition. Some quality metrics are available only if the graph query
functions have been registered. Zoltan_LB_Eval may either print a summary of the results to stdout or return the results
in the output parameters. NOTE: The interface to this function may change in future versions of Zoltan. Users are
discouraged from relying on the output arguments from Zoltan_LB_Eval.

Arguments:
 zz Pointer to the Zoltan structure.
 print_stats If print_stats>0 (.TRUE. in Fortran), print a summary (max, min, and sum) of the quality

metrics to stdout.
 nobj Upon return, the number of objects on this processor.
 obj_wgt Upon return, an array (of dimension OBJ_WEIGHT_DIM) containing the sum of object weights

on this processor.
 ncuts Upon return, the number of (communication) edge cuts for this processor.
 cut_wgt Upon return, an array (of dimension EDGE_WEIGHT_DIM) of cut weights for this processor.

 nboundary Upon return, the number of boundary objects on this processor.
 nadj Upon return, the number of adjacent processors as defined by the communication graph.

Returned Value:
 int Error code.

Zoltan User's Guide: Load-Balancing Interface

file:///F|/docs/Zoltan_html/ug_html/ug_interface_lb.html (3 of 6) [12/1/2003 12:11:44 PM]

Query functions:
 Required: ZOLTAN_NUM_OBJ_FN

ZOLTAN_OBJ_LIST_FN or ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN

 Optional: ZOLTAN_NUM_EDGES_MULTI_F N or ZOLTAN_NUM_EDGES_FN
ZOLTAN_EDGE_LIST_MULTI_F N or ZOLTAN_EDGE_LIST_FN

An output parameter is returned only if the input value of that parameter was not NULL. The rationale for this feature is
that if one wishes just to print the evaluation results, one can simply set all (or some of) the output parameters to NULL in
the function call. From Fortran, one may omit one or more of the optional output parameters.

Note that the sum of ncuts over all processors is actually twice the number of edges cut in the graph (because each edge is
counted twice). The same principle holds for cut_wgt.

There are a few improvements in Zoltan_LB_Eval in Zoltan version 1.5 (or higher). First, the balance data are computed
with respect to both processors and partitions (if applicable). Second, the desired partition sizes (as set by
Zoltan_LB_Set_Partition_Sizes) are taken into account when computing the imbalance.

Known bug: If a partition is spread across several processors, the computed cut information (ncuts and cut_wgt) may be
incorrect (too high).

C: int Zoltan_LB_Free_Part (
 ZOLTAN_ID_PTR *global_ids,
 ZOLTAN_ID_PTR *local_ids,
 int **procs,
 int **to_part);

FORTRAN: FUNCTION Zoltan_LB_Free_Part(global_ids, local_ids, procs, to_part)
INTEGER(Zoltan_INT) :: Zoltan_LB_Free_Part
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: procs, to_part

Zoltan_LB_Free_Part frees the memory allocated by the Zoltan to return the results of Zoltan_LB_Partition or
Zoltan_Invert_Lists. Memory pointed to by the arguments is freed and the arguments are set to NULL in C or nullified
in Fortran. NULL arguments may be passed to Zoltan_LB_Free_Part. Note that this function does not destroy the Zoltan
data structure itself; it is deallocated through a call to Zoltan_Destroy.

Arguments:
 global_ids An array containing the global IDs of objects.
 local_ids An array containing the local IDs of objects.
 procs An array containing processor IDs.
 to_part An array containing partition numbers.
Returned Value:
 int Error code.

Zoltan User's Guide: Load-Balancing Interface

file:///F|/docs/Zoltan_html/ug_html/ug_interface_lb.html (4 of 6) [12/1/2003 12:11:44 PM]

C: int Zoltan_LB_Balance (
 struct Zoltan_Struct *zz,
 int *changes,
 int *num_gid_entries,
 int *num_lid_entries,
 int *num_import,
 ZOLTAN_ID_PTR *import_global_ids,
 ZOLTAN_ID_PTR *import_local_ids,
 int **import_procs,
 int *num_export,
 ZOLTAN_ID_PTR *export_global_ids,
 ZOLTAN_ID_PTR *export_local_ids,
 int **export_procs);

FORTRAN: FUNCTION Zoltan_LB_Balance(zz, changes, num_gid_entries, num_lid_entries, num_import,
import_global_ids, import_local_ids, import_procs, num_export, export_global_ids, export_local_ids,
export_procs)
INTEGER(Zoltan_INT) :: Zoltan_LB_Balance
TYPE(Zoltan_Struct), INTENT(IN) :: zz
LOGICAL, INTENT(OUT) :: changes
INTEGER(Zoltan_INT), INTENT(OUT) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT) :: num_import, num_export
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_procs, export_procs

Zoltan_LB_Balance is a wrapper around Zoltan_LB_Partition that excludes the partition assignment results.
Zoltan_LB_Balance assumes the number of partitions is equal to the number of processors; thus, the partition assignment
is equivalent to the processor assignment. Results of the partitioning are returned in lists of objects to be imported and
exported. These arrays are allocated in Zoltan; applications should not allocate these arrays before calling
Zoltan_LB_Balance. The arrays are later freed through calls to Zoltan_LB_Free_Data or Zoltan_LB_Free_Part.

Arguments:
All arguments are analogous to those in Zoltan_LB_Partition. Partition-assignment arguments
import_to_part and export_to_part are not included, as processor and partitions numbers are
considered to be the same in Zoltan_LB_Balance.

Returned Value:
 int Error code.

C: int Zoltan_LB_Free_Data (
 ZOLTAN_ID_PTR *import_global_ids,
 ZOLTAN_ID_PTR *import_local_ids,
 int **import_procs,
 ZOLTAN_ID_PTR *export_global_ids,
 ZOLTAN_ID_PTR *export_local_ids,
 int **export_procs);

FORTRAN: FUNCTION Zoltan_LB_Free_Data(import_global_ids, import_local_ids, import_procs,
export_global_ids, export_local_ids, export_procs)
INTEGER(Zoltan_INT) :: Zoltan_LB_Free_Data
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_procs, export_procs

Zoltan_LB_Free_Data frees the memory allocated by the Zoltan to return the results of Zoltan_LB_Balance or

Zoltan User's Guide: Load-Balancing Interface

file:///F|/docs/Zoltan_html/ug_html/ug_interface_lb.html (5 of 6) [12/1/2003 12:11:44 PM]

Zoltan_Compute_Destinations. Memory pointed to by the arguments is freed and the arguments are set to NULL in C or
nullified in Fortran. NULL arguments may be passed to Zoltan_LB_Free_Data. Note that this function does not destroy
the Zoltan data structure itself; it is deallocated through a call to Zoltan_Destroy.

Arguments:
 import_global_ids The array containing the global IDs of objects imported to this processor.
 import_local_ids The array containing the local IDs of objects imported to this processor.
 import_procs The array containing the processor IDs of the processors that owned the imported objects in the

previous decomposition (i.e., the source processors).
 export_global_ids The array containing the global IDs of objects exported from this processor.
 export_local_ids The array containing the local IDs of objects exported from this processor.
 export_procs The array containing the processor IDs of processors that own the exported objects in the new

decomposition (i.e., the destination processors).
Returned Value:
 int Error code.

[Table of Contents | Next: Functions for Augmenting a Decomposition | Previous: Initialization Functions]

Zoltan User's Guide: Load-Balancing Interface

file:///F|/docs/Zoltan_html/ug_html/ug_interface_lb.html (6 of 6) [12/1/2003 12:11:44 PM]

Zoltan User's Guide | Next | Previous

Functions for Augmenting a Decomposition

The following functions support the addition of new items to an existing decomposition. Given a decomposition, they
determine to which processor(s) a new item should be assigned. Currently, they work in conjunction with only the RCB,
RIB, and HSFC algorithms.

Zoltan_LB_Point_PP_Assign
Zoltan_LB_Box_PP_Assign

For backward compatibility with previous versions of Zoltan, the following functions are also maintained. These functions
are applicable only when the number of partitions to be generated is equal to the number of processors on which the
partitions are computed. That is, these functions assume "partitions" and "processors" are synonymous.

Zoltan_LB_Point_Assign
Zoltan_LB_Box_Assign

C: int Zoltan_LB_Point_PP_Assign (
 struct Zoltan_Struct * zz,
 double * coords,
 int * proc,
 int * part);

FORTRAN: FUNCTION Zoltan_LB_Point_PP_Assign(zz, coords, proc, part)
INTEGER(Zoltan_INT) :: Zoltan_LB_Point_PP_Assign
TYPE(Zoltan_Struct), INTENT(IN) :: zz
REAL(Zoltan_DOUBLE), DIMENSION(*), INTENT(IN) :: coords
INTEGER(Zoltan_INT), INTENT(OUT) :: proc
INTEGER(Zoltan_INT), INTENT(OUT) :: part

Zoltan_LB_Point_PP_Assign is used to determine to which processor and partition a new point should be assigned. It is
applicable only to geometrically generated decompositions (RCB, RIB, and HSFC). If the parameter KEEP_CUTS is set
to TRUE, then the sequence of cuts that define the decomposition is saved. Given a new geometric point, the processor
and partition which own it can be determined.

Arguments:
 zz Pointer to the Zoltan structure created by Zoltan_Create.

 coords The (x,y) or (x,y,z) coordinates of the point being assigned.
 proc Upon return, the ID of the processor to which the point should belong.
 part Upon return, the ID of the partition to which the point should belong.
Returned Value:
 int Error code.

Zoltan User's Guide: Augmenting a Decomposition

file:///F|/docs/Zoltan_html/ug_html/ug_interface_augment.html (1 of 3) [12/1/2003 12:11:44 PM]

C: int Zoltan_LB_Box_PP_Assign (
 struct Zoltan_Struct * zz,
 double xmin,
 double ymin,
 double zmin,
 double xmax,
 double ymax,
 double zmax,
 int *procs,
 int *numprocs,
 int *parts,
 int *numparts);

FORTRAN: FUNCTION Zoltan_LB_Box_PP_Assign(zz, xmin, ymin, zmin, xmax, ymax, zmax, procs, numprocs,
parts, numparts)
INTEGER(Zoltan_INT) :: Zoltan_LB_Box_PP_Assign
TYPE(Zoltan_Struct), INTENT(IN) :: zz
REAL(Zoltan_DOUBLE), INTENT(IN) :: xmin, ymin, zmin, xmax, ymax, zmax
INTEGER(Zoltan_INT), DIMENSION(*), INTENT(OUT) ::procs
INTEGER(Zoltan_INT), INTENT(OUT) :: numprocs
INTEGER(Zoltan_INT), DIMENSION(*), INTENT(OUT) ::parts
INTEGER(Zoltan_INT), INTENT(OUT) :: numparts

In many settings, it is useful to know which processors and partitions might need to know about an extended geometric
object. Zoltan_LB_Box_PP_Assign addresses this problem. Given a geometric decomposition of space (currently only
RCB, RIB, and HSFC are supported), and given an axis-aligned box around the geometric object,
Zoltan_LB_Box_PP_Assign determines which processors and partitions own geometry that intersects the box. To use
this routine, the parameter KEEP_CUTS must be set to TRUE when the decomposition is generated. This parameter will
cause the sequence of geometric cuts to be saved, which is necessary for Zoltan_LB_Box_PP_Assign to do its job.

Arguments:
 zz Pointer to the Zoltan structure created by Zoltan_Create.

 xmin, ymin, zmin The coordinates of the lower extent of the bounding box around the object. If the geometry is
two-dimensional, the z value is ignored.

 xmax, ymax, zmax The coordinates of the upper extent of the bounding box around the object. If the geometry is
two-dimensional, the z value is ignored.

 procs The list of processors intersecting the box are returned starting at this address. Note that it is the
responsibility of the calling routine to ensure that there is sufficient space for the return list.

 numprocs Upon return, this value contains the number of processors that intersect the box (i.e. the number
of entries placed in the procs list).

 parts The list of partitions intersecting the box are returned starting at this address. Note that it is the
responsibility of the calling routine to ensure that there is sufficient space for the return list.

 numparts Upon return, this value contains the number of partitions that intersect the box (i.e. the number
of entries placed in the parts list).

Returned Value:
 int Error code.

C: int Zoltan_LB_Point_Assign (
 struct Zoltan_Struct * zz,
 double * coords,
 int * proc);

Zoltan User's Guide: Augmenting a Decomposition

file:///F|/docs/Zoltan_html/ug_html/ug_interface_augment.html (2 of 3) [12/1/2003 12:11:44 PM]

FORTRAN: FUNCTION Zoltan_LB_Point_Assign(zz, coords, proc)
INTEGER(Zoltan_INT) :: Zoltan_LB_Point_Assign
TYPE(Zoltan_Struct), INTENT(IN) :: zz
REAL(Zoltan_DOUBLE), DIMENSION(*), INTENT(IN) :: coords
INTEGER(Zoltan_INT), INTENT(OUT) :: proc

Zoltan_LB_Point_Assign is is a wrapper around Zoltan_LB_Point_PP_Assign that excludes the partition assignment
results. Zoltan_LB_Point_Assign assumes the number of partitions is equal to the number of processors; thus, the
partition assignment is equivalent to the processor assignment.

Arguments:
All arguments are analogous to those in Zoltan_LB_Point_PP_Assign. Partition-assignment
argument part is not included, as processor and partitions numbers are considered to be the same
in Zoltan_LB_Point_Assign.

Returned Value:
 int Error code.

C: int Zoltan_LB_Box_Assign (
 struct Zoltan_Struct * zz,
 double xmin,
 double ymin,
 double zmin,
 double xmax,
 double ymax,
 double zmax,
 int *procs,
 int *numprocs);

FORTRAN: FUNCTION Zoltan_LB_Box_Assign(zz, xmin, ymin, zmin, xmax, ymax, zmax, procs, numprocs)
INTEGER(Zoltan_INT) :: Zoltan_LB_Box_Assign
TYPE(Zoltan_Struct), INTENT(IN) :: zz
REAL(Zoltan_DOUBLE), INTENT(IN) :: xmin, ymin, zmin, xmax, ymax, zmax
INTEGER(Zoltan_INT), DIMENSION(*), INTENT(OUT) ::procs
INTEGER(Zoltan_INT), INTENT(OUT) :: numprocs

Zoltan_LB_Box_Assign is a wrapper around Zoltan_LB_Box_PP_Assign that excludes the partition assignment results.
Zoltan_LB_Box_Assign assumes the number of partitions is equal to the number of processors; thus, the partition
assignment is equivalent to the processor assignment.

Arguments:
All arguments are analogous to those in Zoltan_LB_Box_PP_Assign. Partition-assignment
arguments parts and numparts are not included, as processor and partitions numbers are
considered to be the same in Zoltan_LB_Box_Assign.

Returned Value:
 int Error code.

[Table of Contents | Next: Migration Functions | Previous: Load-Balancing Functions]

Zoltan User's Guide: Augmenting a Decomposition

file:///F|/docs/Zoltan_html/ug_html/ug_interface_augment.html (3 of 3) [12/1/2003 12:11:44 PM]

 Zoltan User's Guide | Next | Previous

Migration Functions

Zoltan's migration functions transfer object data to the processors in a new decomposition. Data to be transferred is
specified through the import/export lists returned by Zoltan_LB_Partition (or Zoltan_LB_Balance). Alternatively, users
may specify their own import/export lists.

The migration functions can migrate objects based on their new partition assignments and/or their new processor
assignments. Behavior is determined by the MIGRATE_ONLY_PROC_CHANGES parameter.

If requested, Zoltan can automatically transfer an application's data between processors to realize a new decomposition.
This functionality will be performed as part of the call to Zoltan_LB_Partition (or Zoltan_LB_Balance) if the
AUTO_MIGRATE parameter is set to TRUE (nonzero) via a call to Zoltan_Set_Param. This approach is effective for
when the data to be moved is relatively simple. For more complicated data movement, the application can leave
AUTO_MIGRATE FALSE and call Zoltan_Migrate (or Zoltan_Help_Migrate) itself. In either case, routines to pack
and unpack object data must be provided by the application. See the Migration Examples for examples with and without
auto-migration.

The following functions are the migration interface functions. Their detailed descriptions can be found below.

Zoltan_Invert_Lists
Zoltan_Migrate

The following functions are maintained for backward compatibility with previous versions of Zoltan. These functions are
applicable only when the number of partitions to be generated is equal to the number of processors on which the partitions
are computed. That is, these functions assume "partitions" and "processors" are synonymous.

Zoltan_Compute_Destinations
Zoltan_Help_Migrate

C: int Zoltan_Invert_Lists (
 struct Zoltan_Struct *zz,
 int num_known,
 ZOLTAN_ID_PTR known_global_ids,
 ZOLTAN_ID_PTR known_local_ids,
 int *known_procs,
 int *known_to_part,
 int *num_found,
 ZOLTAN_ID_PTR *found_global_ids,
 ZOLTAN_ID_PTR *found_local_ids,
 int **found_procs,
 int **found_to_part);

FORTRAN: FUNCTION Zoltan_Invert_Lists(zz, num_known, known_global_ids, known_local_ids,
known_procs, known_to_part, num_found, found_global_ids, found_local_ids, found_procs,
found_to_part)
INTEGER(Zoltan_INT) :: Zoltan_Invert_Lists
TYPE(Zoltan_Struct),INTENT(IN) :: zz
INTEGER(Zoltan_INT), INTENT(IN) :: num_known
INTEGER(Zoltan_INT), INTENT(OUT) :: num_found
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_global_ids, found_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_local_ids, found_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_procs, found_procs
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_to_part, found_to_part

Zoltan_Invert_Lists computes inverse communication maps useful for migrating data. It can be used in two ways:

Zoltan User's Guide: Migration Interface

file:///F|/docs/Zoltan_html/ug_html/ug_interface_mig.html (1 of 6) [12/1/2003 12:11:46 PM]

Given a list of known off-processor objects to be received by a processor,
compute a list of local objects to be sent by the processor to other processors; or

●

Given a list of known local objects to be sent by a processor to other processors,
compute a list of off-processor objects to be received by the processor.

●

For example, if each processor knows which objects it will import from other processors, Zoltan_Invert_Lists computes
the list of objects each processor needs to export to other processors. If, instead, each processor knows which objects it
will export to other processors, Zoltan_Invert_Lists computes the list of objects each processor will import from other
processors. The computed lists are allocated in Zoltan; they should not be allocated by the application before calling
Zoltan_Invert_Lists. These lists can be freed through a call to Zoltan_LB_Free_Part.

Arguments:
 zz Pointer to the Zoltan structure, created by Zoltan_Create, to be used in this invocation of the

migration routine.
 num_known The number of known objects to be received (sent) by this processor.
 known_global_ids An array of num_known global IDs of known objects to be received (sent) by this processor.

(size = num_known * NUM_GID_ENTRIES)

 known_local_ids An array of num_known local IDs of known objects to be received (sent) by this processor.
(size = num_known * NUM_LID_ENTRIES)

 known_procs An array of size num_known listing the processor IDs of the processors that the known objects
will be received from (sent to).

 known_to_part An array of size num_known listing the partition numbers of the partitions that the known
objects will be assigned to.

 num_found Upon return, the number of objects that must be sent to (received from) other processors.
 found_global_ids Upon return, an array of num_found global IDs of objects to be sent (received) by this processor.

(size = num_found * NUM_GID_ENTRIES)

 found_local_ids Upon return, an array of num_found local IDs of objects to be sent (received) by this processor.
(size = num_found * NUM_LID_ENTRIES)

 found_procs Upon return, an array of size num_found listing the processor IDs of processors that the found
objects will be sent to (received from).

 found_to_part An array of size num_found listing the partition numbers of the partitions that the found objects
will be assigned to.

Returned Value:
 int Error code.

Note that the number of global and local ID entries (NUM_GID_ENTRIES and NUM_LID_ENTRIES) should be set
using Zoltan_Set_Param before calling Zoltan_Invert_Lists. All processors must have the same values for these two
parameters.

C: int Zoltan_Migrate (
 struct Zoltan_Struct *zz,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int *import_to_part,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs,
 int *export_to_part);

Zoltan User's Guide: Migration Interface

file:///F|/docs/Zoltan_html/ug_html/ug_interface_mig.html (2 of 6) [12/1/2003 12:11:46 PM]

FORTRAN: FUNCTION Zoltan_Migrate(zz, num_import, import_global_ids, import_local_ids, import_procs,
import_to_part, num_export, export_global_ids, export_local_ids, export_procs, export_to_part)
INTEGER(Zoltan_INT) :: Zoltan_Migrate
TYPE(Zoltan_Struct),INTENT(IN) :: zz
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_procs, export_procs
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_to_part, export_to_part

Zoltan_Migrate takes lists of objects to be sent to other processors, along with the destinations of those objects, and
performs the operations necessary to send the data associated with those objects to their destinations. Zoltan_Migrate
performs the following operations using the application-registered functions:

Call ZOLTAN_PRE_MIGRATE_PP_FN_TYPE (if registered)●

For each export object, call ZOLTAN_OBJ_SIZE_FN_TYPE to get object sizes.●

For each export object, call ZOLTAN_PACK_OBJ_FN_TYPE to load communication buffers.●

Communicate buffers to destination processors.●

Call ZOLTAN_MID_MIGRATE_PP_FN_TYPE (if registered).●

For each imported object, call ZOLTAN_UNPACK_OBJ_FN_TYPE to move data from the buffer into the new
processor's data structures.

●

Call ZOLTAN_POST_MIGRATE_PP_FN_TYPE (if registered).●

Either export lists or import lists must be specified for Zoltan_Migrate. Both export lists and import lists may be
specified, but both are not required.

If export lists are provided, non-NULL values for input arguments import_global_ids, import_local_ids, import_procs,
and import_to_part are optional. The values must be non-NULL only if no export lists are provided or if the import lists
are used by the application callback functions ZOLTAN_PRE_MIGRATE_PP_FN,
ZOLTAN_MID_MIGRATE_PP_FN, and ZOLTAN_POST_MIGRATE_PP_FN. If all processors pass NULL
arguments for the import arrays, the value of num_import should be -1.

Similarly, if import lists are provided, non-NULL values for input arguments export_global_ids, export_local_ids,
export_procs, and export_to_part are optional. The values must be non-NULL only if no import lists are provided or if the
export lists are used by the application callback functions ZOLTAN_PRE_MIGRATE_PP_FN,
ZOLTAN_MID_MIGRATE_PP_FN, and ZOLTAN_POST_MIGRATE_PP_FN. If all processors pass NULL
arguments for the export arrays, the value of num_export should be -1. In this case, Zoltan_Migrate computes the export
lists based on the import lists.

Arguments:
 zz Pointer to the Zoltan structure, created by Zoltan_Create, to be used in this invocation of the

migration routine.
 num_import The number of objects that are needed by this processor that are stored on other processors (i.e.,

the number of objects to be imported to this processor).
Use num_import=-1 if all processors do not specify import arrays.

 import_global_ids An array of num_import global IDs of objects needed by this processor that are stored on other
processors.
(size = num_import * NUM_GID_ENTRIES).
All processors may pass import_global_ids=NULL if export lists are provided and
import_global_ids is not needed by callback functions ZOLTAN_PRE_MIGRATE_PP_FN,
ZOLTAN_MID_MIGRATE_PP_FN, and ZOLTAN_POST_MIGRATE_PP_FN.

Zoltan User's Guide: Migration Interface

file:///F|/docs/Zoltan_html/ug_html/ug_interface_mig.html (3 of 6) [12/1/2003 12:11:46 PM]

 import_local_ids An array of num_import local IDs of objects needed by this processor that are stored on other
processors.
(size = num_import * NUM_LID_ENTRIES)
All processors may pass import_local_ids=NULL if export lists are provided and
import_local_ids is not needed by callback functions ZOLTAN_PRE_MIGRATE_PP_FN,
ZOLTAN_MID_MIGRATE_PP_FN, and ZOLTAN_POST_MIGRATE_PP_FN .

 import_procs An array of size num_import listing the processor IDs of the processors that own objects needed
by this processor (i.e., the source processors).
All processors may pass import_procs=NULL if export lists are provided and import_procs is
not needed by callback functions ZOLTAN_PRE_MIGRATE_PP_FN,
ZOLTAN_MID_MIGRATE_PP_FN, and ZOLTAN_POST_MIGRATE_PP_FN .

 import_to_part An array of size num_import listing the partitions to which imported objects should be assigned.
All processors may pass import_to_part=NULL if export lists are provided and import_to_part
is not needed by callback functions ZOLTAN_PRE_MIGRATE_PP_FN,
ZOLTAN_MID_MIGRATE_PP_FN, and ZOLTAN_POST_MIGRATE_PP_FN .

 num_export The number of objects that were stored on this processor in the previous decomposition that are
needed by other processors (i.e., the number of objects that must be sent from this processor to
other processors).
Use num_export=-1 if all processors do not specify export arrays.

 export_global_ids An array of num_export global IDs of objects to be sent from this processor.
(size = num_export * NUM_GID_ENTRIES)
All processors may pass export_global_ids=NULL if import lists are provided and
export_global_ids is not needed by callback functions ZOLTAN_PRE_MIGRATE_PP_FN,
ZOLTAN_MID_MIGRATE_PP_FN, and ZOLTAN_POST_MIGRATE_PP_FN .

 export_local_ids An array of num_export local IDs of objects to be sent from this processor.
(size = num_export * NUM_LID_ENTRIES)
All processors may pass export_local_ids=NULL if import lists are provided and
export_local_ids is not needed by callback functions ZOLTAN_PRE_MIGRATE_PP_FN,
ZOLTAN_MID_MIGRATE_PP_FN, and ZOLTAN_POST_MIGRATE_PP_FN .

 export_procs An array of size num_export listing the processor IDs of processors that need the sent objects
(i.e., the destination processors).
All processors may pass export_procs=NULL if import lists are provided and export_procs is
not needed by callback functions ZOLTAN_PRE_MIGRATE_PP_FN,
ZOLTAN_MID_MIGRATE_PP_FN, and ZOLTAN_POST_MIGRATE_PP_FN .

 export_to_part An array of size num_export listing the partitions to which exported objects should be assigned.
All processors may pass export_to_part=NULL if import lists are provided and export_to_part
is not needed by callback functions ZOLTAN_PRE_MIGRATE_PP_FN,
ZOLTAN_MID_MIGRATE_PP_FN, and ZOLTAN_POST_MIGRATE_PP_FN .

Returned Value:
 int Error code.

Note that the number of global and local ID entries (NUM_GID_ENTRIES and NUM_LID_ENTRIES) should be set
using Zoltan_Set_Param before calling Zoltan_Migrate. All processors must have the same values for these two
parameters.

Zoltan User's Guide: Migration Interface

file:///F|/docs/Zoltan_html/ug_html/ug_interface_mig.html (4 of 6) [12/1/2003 12:11:46 PM]

C: int Zoltan_Compute_Destinations (
 struct Zoltan_Struct *zz,
 int num_known,
 ZOLTAN_ID_PTR known_global_ids,
 ZOLTAN_ID_PTR known_local_ids,
 int *known_procs,
 int *num_found,
 ZOLTAN_ID_PTR *found_global_ids,
 ZOLTAN_ID_PTR *found_local_ids,
 int **found_procs);

FORTRAN: FUNCTION Zoltan_Compute_Destinations(zz, num_known, known_global_ids, known_local_ids,
known_procs, num_found, found_global_ids, found_local_ids, found_procs)
INTEGER(Zoltan_INT) :: Zoltan_Compute_Destinations
TYPE(Zoltan_Struct),INTENT(IN) :: zz
INTEGER(Zoltan_INT), INTENT(IN) :: num_known
INTEGER(Zoltan_INT), INTENT(OUT) :: num_found
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_global_ids, found_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_local_ids, found_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_procs, found_procs

Zoltan_Compute_Destinations is a wrapper around Zoltan_Invert_Lists that excludes partition assignment arrays. It is
maintained for backward compatibility with previous versions of Zoltan.

Zoltan_Compute_Destinations assumes the number of partitions is equal to the number of processors. The computed
lists are allocated in Zoltan; they should not be allocated by the application before calling
Zoltan_Compute_Destinations. These lists can be freed through a call to Zoltan_LB_Free_Data or
Zoltan_LB_Free_Part.

Arguments:
All arguments are analogous to those in Zoltan_Invert_Lists. Partition-assignment arrays
known_to_part and found_to_part are not included, as partition and processor numbers are
assumed to be the same in Zoltan_Compute_Destinations.

Returned Value:
 int Error code.

Note that the number of global and local ID entries (NUM_GID_ENTRIES and NUM_LID_ENTRIES) should be set
using Zoltan_Set_Param before calling Zoltan_Compute_Destinations. All processors must have the same values for
these two parameters.

C: int Zoltan_Help_Migrate (
 struct Zoltan_Struct *zz,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs);

Zoltan User's Guide: Migration Interface

file:///F|/docs/Zoltan_html/ug_html/ug_interface_mig.html (5 of 6) [12/1/2003 12:11:46 PM]

FORTRAN: FUNCTION Zoltan_Help_Migrate(zz, num_import, import_global_ids, import_local_ids,
import_procs, num_export, export_global_ids, export_local_ids, export_procs)
INTEGER(Zoltan_INT) :: Zoltan_Help_Migrate
TYPE(Zoltan_Struct),INTENT(IN) :: zz
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_procs, export_procs

Zoltan_Help_Migrate is a wrapper around Zoltan_Migrate that excludes partition assignment arrays. It is maintained
for backward compatibility with previous versions of Zoltan.

Zoltan_Help_Migrate assumes the number of partitions is equal to the number of processors. It uses migration pre-,
mid-, and post-processing routines ZOLTAN_PRE_MIGRATE_FN_TYPE,
ZOLTAN_MID_MIGRATE_FN_TYPE, and ZOLTAN_POST_MIGRATE_FN_TYPE, respectively, which also
exclude partition assignment arrays.

Arguments:
All arguments are analogous to those in Zoltan_Migrate. Partition-assignment arrays
import_to_part and export_to_part are not included, as partition and processor numbers are
assumed to be the same in Zoltan_Help_Migrate.

Returned Value:
 int Error code.

[Table of Contents | Next: Ordering Interface | Previous: Functions for Augmenting a Decomposition]

Zoltan User's Guide: Migration Interface

file:///F|/docs/Zoltan_html/ug_html/ug_interface_mig.html (6 of 6) [12/1/2003 12:11:46 PM]

Zoltan User's Guide | Next | Previous

Ordering Functions

Zoltan provides limited capability for ordering a set of objects, typically given as a graph. The following functions are the
ordering interface functions in the Zoltan library; their descriptions are included below.

Zoltan_Order

C: int Zoltan_Order (
 struct Zoltan_Struct *zz,
 int *num_gid_entries,
 int *num_lid_entries,
 int num_obj,
 ZOLTAN_ID_PTR global_ids,
 ZOLTAN_ID_PTR local_ids,
 int *rank,
 int *iperm,
 struct Zoltan_Order_Struct *order_info);

FORTRAN: FUNCTION Zoltan_Order(zz, num_gid_entries, num_lid_entries, num_obj, global_ids, local_ids,
rank, iperm, order_info)
INTEGER(Zoltan_INT) :: Zoltan_Order
TYPE(Zoltan_Struct), INTENT(IN) :: zz
INTEGER(Zoltan_INT), INTENT(OUT) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_obj
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: global_ids, local_ids
INTEGER(Zoltan_INT), DIMENSION(:) :: rank, iperm
TYPE(Zoltan_Order_Struct), INTENT(INOUT) :: order_info

Zoltan_Order invokes the ordering routine specified by the ORDER_METHOD parameter. Results of the ordering are
returned in the arrays rank and iperm. rank[i] gives the rank of global_ids[i] in the computed ordering, while iperm is the
inverse permutation of rank, that is, iperm[rank[i]] = i. The ordering may be either global or local, depending on
ORDER_TYPE. The arrays global_ids, local_ids, rank, and iperm should all be allocated by the application before
Zoltan_Order is called. Each array must have space for (at least) num_obj elements, where num_obj is the number of
objects residing on a processor.

Arguments:
 zz Pointer to the Zoltan structure, created by Zoltan_Create, to be used in this invocation of the

load-balancing routine.
 num_gid_entries Upon return, the number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries Upon return, the number of array entries used to describe a single local ID. This value is the
maximum value over all processors of the parameter NUM_LID_ENTRIES.

 num_obj Number of objects to order on this processor. At present, num_obj should be the total number of
objects residing on a processor. In future releases, ordering only a subset of the objects may be
permitted.

 global_ids An array of global IDs of objects to be ordered on this processor. (size = num_obj *
num_gid_entries)
The array may be uninitialized on input (if REORDER is false), but memory must have been
allocated before Zoltan_Order is called.

Zoltan User's Guide: Ordering Interface

file:///F|/docs/Zoltan_html/ug_html/ug_interface_order.html (1 of 2) [12/1/2003 12:11:46 PM]

 local_ids An array of local IDs of objects to be ordered on this processor. (size = num_obj *
num_lid_entries)
The array may be uninitialized on input (if REORDER is false), but memory must have been
allocated before Zoltan_Order is called.

 rank Upon return, an array of length num_obj containing the rank of each object in the computed
ordering. When rank[i] = j, that means that the object corresponding to global_ids[i] is the jth
object in the ordering. (This array corresponds directly to the perm array in METIS and the
order array in ParMETIS.) Note that the rank may refer to either a local or a global ordering,
depending on ORDER_TYPE. Memory for this array must have been allocated before
Zoltan_Order is called.

 iperm Upon return, an array of length num_obj containing the inverse permutation of rank. That is,
iperm[rank[i]] = i. In other words, iperm[j] gives the jth object in the ordering. Memory for this
array must have been allocated before Zoltan_Order is called.

 order_info Upon return, this struct contains additional information about the ordering produced. This
parameter is currently not used and should always be set to NULL.

Returned Value:
 int Error code.

[Table of Contents | Next: Application-Registered Query Functions | Previous: Migration Functions]

Zoltan User's Guide: Ordering Interface

file:///F|/docs/Zoltan_html/ug_html/ug_interface_order.html (2 of 2) [12/1/2003 12:11:46 PM]

Zoltan User's Guide | Next | Previous

Application-Registered Query Functions

Zoltan gets information about a processor's objects through calls to query functions. These functions must be provided by
the application. They are "registered" with Zoltan; that is, a pointer to the function is passed to Zoltan, which can then call
that function when its information is needed. Two categories of query functions are used by the library:

General Zoltan Query Functions
Migration Query Functions

In each category, a variety of query functions can be registered by the user. The query functions have a function type,
describing their purpose. Functions can be registered with a Zoltan structure in two ways: through calls to
Zoltan_Set_Fn or through calls to query-function-specific functions Zoltan_Set_<zoltan_fn_type>_Fn. When a
function is registered through a call to Zoltan_Set_Fn, its function type is passed in the fn_type argument. When
Zoltan_Set_<zoltan_fn_type>_Fn is used to register functions, the type of the function is implicit in the fn_ptr
argument. Each function description below includes both its function type and function prototype.

Query functions that return information about data objects owned by a processor come in two forms: list-based functions
that return information about a list of objects, and iterator functions that return information about a single object. Users
can provide either version of the query function; they need not provide both. Zoltan calls the list-based functions with the
IDs of all objects needed; this approach often provides faster performance as it eliminates the overhead of multiple
function calls. List-based functions have the word "MULTI" in their function-type name. If, instead, the application
provides iterator functions, Zoltan calls the iterator function once for each object whose data is needed. This approach,
while slower, allows Zoltan to use less memory for some data.

Some algorithms in Zoltan require that certain query functions be registered by the application; for example, geometric
partitioning algorithms such as Recursive Coordinate Bisection (RCB) require that either a ZOLTAN_GEOM_FN or a
ZOLTAN_GEOM_MULTI_FN be registered. When a default value is specified below, the query function type is
optional; if a function of that type is not registered, the default values are used. Details of which query functions are
required by particular algorithms are included in the Algorithms section.

Many of the functions have both global and local object identifiers (IDs) in their argument lists. The global IDs provided
by the application must be unique across all processors; they are used for identification within Zoltan. The local IDs are
not used by Zoltan; they are provided for the convenience of the application and can be anything the application desires.
The local IDs can be used by application query routines to enable direct access to application data. For example, the
object with global ID "3295" may be stored by the application in location "15" of an array in the processor's local
memory. Both global ID "3295" and local ID "15" can be used by the application to describe the object. Then, rather than
searching the array for global ID "3295," the application query routines can subsequently use the local ID to index directly
into the local storage array. See Data Types for Object IDs for a description of global and local IDs. All of the functions
have, as their first argument, a pointer to data that is passed to Zoltan through Zoltan_Set_Fn or
Zoltan_Set_<zoltan_fn_type>_Fn. This data is not used by Zoltan. A different set of data can be supplied for each
registered function. For example, if the local ID is an index into an array of data structures, then the data pointer might
point to the head of the data structure array.

As their last argument, all functions have an error code that should be set and returned by the registered function.

[Table of Contents | Next: Load-Balancing Query Functions | Previous: Migration Functions]

Zoltan User's Guide: Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query.html [12/1/2003 12:11:46 PM]

Zoltan User's Guide | Next | Previous

General Zoltan Query Functions

The following registered functions are used by various Zoltan algorithms in the Zoltan library. No single algorithm uses
all the query functions; the algorithm descriptions indicate which query functions are required by individual algorithms.

Object ID Functions

ZOLTAN_NUM_OBJ_FN
ZOLTAN_OBJ_LIST_FN
ZOLTAN_FIRST_OBJ_FN
ZOLTAN_NEXT_OBJ_FN
ZOLTAN_PARTITION_MULTI_FN or ZOLTAN_PARTITION_FN

Geometry-Based Functions

ZOLTAN_NUM_GEOM_FN
ZOLTAN_GEOM_MULTI_FN or ZOLTAN_GEOM_FN

Graph-Based Functions

ZOLTAN_NUM_EDGES_MULTI_FN or ZOLTAN_NUM_EDGES_FN
ZOLTAN_EDGE_LIST_MULTI_FN or ZOLTAN_EDGE_LIST_FN

Tree-Based Functions

ZOLTAN_NUM_COARSE_OBJ_FN
ZOLTAN_COARSE_OBJ_LIST_FN
ZOLTAN_FIRST_COARSE_OBJ_FN
ZOLTAN_NEXT_COARSE_OBJ_FN
ZOLTAN_NUM_CHILD_FN
ZOLTAN_CHILD_LIST_FN
ZOLTAN_CHILD_WEIGHT_FN

Border Object Functions (currently unused)

ZOLTAN_NUM_BORDER_OBJ_FN
ZOLTAN_BORDER_OBJ_LIST_FN
ZOLTAN_FIRST_BORDER_OBJ_FN
ZOLTAN_NEXT_BORDER_OBJ_FN

Object ID Functions

C: typedef int ZOLTAN_NUM_OBJ_FN (void *data, int *ierr);
FORTRAN: FUNCTION Get_Num_Obj(data, ierr)

INTEGER(Zoltan_INT) :: Get_Num_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

Zoltan User's Guide: General Zoltan Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_lb.html (1 of 21) [12/1/2003 12:11:52 PM]

A ZOLTAN_NUM_OBJ_FN query function returns the number of objects that are currently assigned to the processor.

Function Type: ZOLTAN_NUM_OBJ_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 ierr Error code to be set by function.
Returned Value:
 int The number of objects that are assigned to the processor.

C: typedef void ZOLTAN_OBJ_LIST_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids, int wgt_dim, float *obj_wgts,
int *ierr);

FORTRAN: SUBROUTINE Get_Obj_List(data, num_gid_entries, num_lid_entries, global_ids, local_ids,
wgt_dim, obj_wgts, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: obj_wgts
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_OBJ_LIST_FN query function fills two (three if weights are used) arrays with information about the
objects currently assigned to the processor. Both arrays are allocated (and subsequently freed) by Zoltan; their size is
determined by a call to a ZOLTAN_NUM_OBJ_FN query function to get the array size. For many algorithms, either a
ZOLTAN_OBJ_LIST_FN query function or a ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN
query-function pair must be registered; however, both query options need not be provided.

Function Type: ZOLTAN_OBJ_LIST_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 global_ids Upon return, an array of unique global IDs for all objects assigned to the processor.
 local_ids Upon return, an array of local IDs, the meaning of which can be determined by the application,

for all objects assigned to the processor.
 wgt_dim The number of weights associated with an object (typically 1), or 0 if weights are not requested.

This value is set through the parameter OBJ_WEIGHT_DIM.

 obj_wgts Upon return, an array of object weights. Weights for object i are stored in
obj_wgts[(i-1)*wgt_dim:i*wgt_dim-1]. If wgt_dim=0, the return value of obj_wgts is undefined
and may be NULL.

 ierr Error code to be set by function.

Zoltan User's Guide: General Zoltan Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_lb.html (2 of 21) [12/1/2003 12:11:52 PM]

C: typedef int ZOLTAN_FIRST_OBJ_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN_ID_PTR first_global_id, ZOLTAN_ID_PTR first_local_id, int wgt_dim,
float *first_obj_wgt, int *ierr);

FORTRAN: FUNCTION Get_First_Obj(data, num_gid_entries, num_lid_entries, first_global_id, first_local_id,
wgt_dim, first_obj_wgt, ierr)
INTEGER(Zoltan_INT) :: Get_First_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: first_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: first_local_id
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: first_obj_wgt
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_FIRST_OBJ_FN query function initializes an iteration over objects assigned to the processor. It returns the
global and local IDs of the first object on the processor. Subsequent calls to a ZOLTAN_NEXT_OBJ_FN query function
iterate over and return other objects assigned to the processor. This query-function pair frees the application from having
to build an array of objects (as in ZOLTAN_OBJ_LIST_FN) and allows Zoltan's routines to obtain only as much
information about objects as they need. For many algorithms, either a ZOLTAN_OBJ_LIST_FN query function or a
ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN query-function pair must be registered; however, both query
options need not be provided.

Function Type: ZOLTAN_FIRST_OBJ_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 first_global_id The returned value of the global ID for the first object; the value is ignored if there are no
objects.

 first_local_id The returned value of the local ID for the first object; the value is ignored if there are no objects.
 wgt_dim The number of weights associated with an object (typically 1), or 0 if weights are not requested.

This value is set through the parameter OBJ_WEIGHT_DIM.

 first_obj_wgt Upon return, the first object's weights; an array of length wgt_dim. Undefined if wgt_dim=0.
 ierr Error code to be set by function.
Returned Value:
 1 If first_global_id and first_local_id contain valid IDs of the first object.
 0 If no objects are available.

C: typedef int ZOLTAN_NEXT_OBJ_FN (void * data, int num_gid_entries, int num_lid_entries,
ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, ZOLTAN_ID_PTR next_global_id,
ZOLTAN_ID_PTR next_local_id, int wgt_dim, float *next_obj_wgt, int *ierr);

Zoltan User's Guide: General Zoltan Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_lb.html (3 of 21) [12/1/2003 12:11:52 PM]

FORTRAN: FUNCTION Get_Next_Obj(data, num_gid_entries, num_lid_entries, global_id, local_id,
next_global_id, next_local_id, wgt_dim, next_obj_wgt, ierr)
INTEGER(Zoltan_INT) :: Get_Next_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: next_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: next_local_id
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: next_obj_wgt
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_NEXT_OBJ_FN query function is an iterator function which, when given an object assigned to the
processor, returns the next object assigned to the processor. The first object of the iteration is provided by a
ZOLTAN_FIRST_OBJ_FN query function. This query-function pair frees the application from having to build an array
of objects (as in ZOLTAN_OBJ_LIST_FN) and allows Zoltan's routines to obtain only as much information about
objects as they need. For many algorithms, either a ZOLTAN_OBJ_LIST_FN query function or a
ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN query-function pair must be registered; however, both query
options need not be provided.

Function Type: ZOLTAN_NEXT_OBJ_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 global_id The global ID of the previous object.
 local_id The local ID of the previous object.
 next_global_id The returned value of the global ID for the next object; the value is ignored if there are no more

objects.
 next_local_id The returned value of the local ID for the next object; the value is ignored if there are no more

objects.
 wgt_dim The number of weights associated with an object (typically 1), or 0 if weights are not requested.

This value is set through the parameter OBJ_WEIGHT_DIM.

 next_obj_wgt Upon return, the next object's weights; an array of length wgt_dim. Undefined if wgt_dim=0.
 ierr Error code to be set by function.
Returned Value:
 1 If next_global_id and next_local_id contain valid IDs of the next object.
 0 If no more objects are available.

C: typedef void ZOLTAN_PARTITION_MULTI_FN (void *data, int num_gid_entries,
int num_lid_entries, int num_obj, ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids,
int *parts, int *ierr);

Zoltan User's Guide: General Zoltan Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_lb.html (4 of 21) [12/1/2003 12:11:52 PM]

FORTRAN: SUBROUTINE Get_Partition_Multi(data, num_gid_entries, num_lid_entries, num_obj, global_ids,
local_ids, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries, num_obj
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: parts
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_PARTITION_MULTI_FN query function returns a list of partitions to which given objects are currently
assigned. If a ZOLTAN_PARTITION_MULTI_FN or ZOLTAN_PARTITION_FN is not registered, Zoltan assumes
the partition numbers are the processor number of the owning processor. Valid partition numbers are non-negative
integers.

Function Type: ZOLTAN_PARTITION_MULTI_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 num_obj The number of object IDs in arrays global_ids and local_ids.
 global_ids The global IDs of the objects for which the partition numbers should be returned.
 local_ids The local IDs of the objects for which the partition numbers should be returned.
 parts Upon return, an array of partition numbers corresponding to the global and local IDs.
 ierr Error code to be set by function.

C: typedef int ZOLTAN_PARTITION_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, int *ierr);

FORTRAN: FUNCTION Get_Partition(data, num_gid_entries, num_lid_entries, global_id, local_id, ierr)
INTEGER(Zoltan_INT) :: Get_Partition
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_PARTITION_FN query function returns the partition to which a given object is currently assigned. If a
ZOLTAN_PARTITION_FN or ZOLTAN_PARTITION_MULTI_FN is not registered, Zoltan assumes the partition
numbers are the processor number of the owning processor. Valid partition numbers are non-negative integers.

Function Type: ZOLTAN_PARTITION_FN_TYPE
Arguments:

Zoltan User's Guide: General Zoltan Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_lb.html (5 of 21) [12/1/2003 12:11:52 PM]

 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 global_id The global ID of the object for which the partition number should be returned.
 local_id The local ID of the object for which the partition number should be returned.
 ierr Error code to be set by function.
Returned Value:
 int The partition number for the object identified by global_id and local_id.

Geometry-based Functions

C: typedef int ZOLTAN_NUM_GEOM_FN (void *data, int *ierr);
FORTRAN: FUNCTION Get_Num_Geom(data, ierr)

INTEGER(Zoltan_INT) :: Get_Num_Geom
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_NUM_GEOM_FN query function returns the number of values needed to express the geometry of an
object. For example, for a two-dimensional mesh-based application, (x,y) coordinates are needed to describe an object's
geometry; thus the ZOLTAN_NUM_GEOM_FN query function should return the value of two. For a similar
three-dimensional application, the return value should be three.

Function Type: ZOLTAN_NUM_GEOM_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 ierr Error code to be set by function.
Returned Value:
 int The number of values needed to express the geometry of an object.

C: typedef void ZOLTAN_GEOM_MULTI_FN (void *data, int num_gid_entries, int num_lid_entries,
int num_obj, ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids, int num_dim,
double *geom_vec, int *ierr);

Zoltan User's Guide: General Zoltan Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_lb.html (6 of 21) [12/1/2003 12:11:52 PM]

FORTRAN: SUBROUTINE Get_Geom_Multi(data, num_gid_entries, num_lid_entries, num_obj, global_ids,
local_ids, num_dim, geom_vec, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_obj, num_dim
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_ids
REAL(Zoltan_DOUBLE), INTENT(OUT), DIMENSION(*) :: geom_vec
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_GEOM_MULTI FN query function returns a vector of geometry values for a list of given objects. The
geometry vector is allocated by Zoltan to be of size num_obj * num_dim; its format is described below.

Function Type: ZOLTAN_GEOM_MULTI_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 num_obj The number of object IDs in arrays global_ids and local_ids.
 global_ids Array of global IDs of objects whose geometry values should be returned.
 local_ids Array of local IDs of objects whose geometry values should be returned.
 num_dim Number of coordinate entries per object (typically 1, 2, or 3).
 geom_vec Upon return, an array containing geometry values. For object i (specified by

global_ids[i*num_gid_entries] and local_ids[i*num_lid_entries], i=0,1,...,num_obj-1),
coordinate values should be stored in geom_vec[i*num_dim:(i+1)*num_dim-1].

 ierr Error code to be set by function.

C: typedef void ZOLTAN_GEOM_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, double *geom_vec, int *ierr);

FORTRAN: SUBROUTINE Get_Geom(data, num_gid_entries, num_lid_entries, global_id, local_id, geom_vec,
ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
REAL(Zoltan_DOUBLE), INTENT(OUT), DIMENSION(*) :: geom_vec
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_GEOM_FN query function returns a vector of geometry values for a given object. The geometry vector is
allocated by Zoltan to be of the size returned by a ZOLTAN_NUM_GEOM_FN query function.

Function Type: ZOLTAN_GEOM_FN_TYPE

Zoltan User's Guide: General Zoltan Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_lb.html (7 of 21) [12/1/2003 12:11:52 PM]

Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 global_id The global ID of the object whose geometry values should be returned.
 local_id The local ID of the object whose geometry values should be returned.
 geom_vec Upon return, an array containing geometry values.
 ierr Error code to be set by function.

Graph-based Functions

C: typedef void ZOLTAN_NUM_EDGES_MULTI_FN (void *data, int num_gid_entries,
int num_lid_entries, int num_obj, ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids,
int *num_edges, int *ierr);

FORTRAN: SUBROUTINE Get_Num_Edges_Multi(data, num_gid_entries, num_lid_entries, num_obj,
global_ids, local_ids, num_edges, ierr)
INTEGER(Zoltan_INT) :: Get_Num_Edges
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries, num_obj
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(OUT),DIMENSION(*) :: num_edges
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_NUM_EDGES_MULTI_FN query function returns the number of edges in the communication graph of
the application for each object in a list of objects. That is, for each object in the global_ids/local_ids arrays, the number of
objects with which the given object must share information is returned.

Function Type: ZOLTAN_NUM_EDGES_MULTI_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 num_obj The number of object IDs in arrays global_ids and local_ids.
 global_ids Array of global IDs of objects whose number of edges should be returned.
 local_ids Array of local IDs of objects whose number of edges should be returned.
 num_edges Upon return, an array containing numbers of edges. For object i (specified by

global_ids[i*num_gid_entries] and local_ids[i*num_lid_entries], i=0,1,...,num_obj-1), the
number of edges should be stored in num_edges[i].

Zoltan User's Guide: General Zoltan Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_lb.html (8 of 21) [12/1/2003 12:11:52 PM]

 ierr Error code to be set by function.

C: typedef int ZOLTAN_NUM_EDGES_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, int *ierr);

FORTRAN: FUNCTION Get_Num_Edges(data, num_gid_entries, num_lid_entries, global_id, local_id, ierr)
INTEGER(Zoltan_INT) :: Get_Num_Edges
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_NUM_EDGES_FN query function returns the number of edges for a given object in the communication
graph of the application (i.e., the number of objects with which the given object must share information).

Function Type: ZOLTAN_NUM_EDGES_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 global_id The global ID of the object for which the number of edges should be returned.
 local_id The local ID of the object for which the number of edges should be returned.
 ierr Error code to be set by function.
Returned Value:
 int The number of edges for the object identified by global_id and local_id.

C: typedef void ZOLTAN_EDGE_LIST_MULTI_FN (void *data, int num_gid_entries,
int num_lid_entries, int num_obj, ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids,
int *num_edges, ZOLTAN_ID_PTR nbor_global_id, int *nbor_procs, int wgt_dim, float *ewgts,
int *ierr);

FORTRAN: SUBROUTINE Get_Edge_List_Multi(data, num_gid_entries, num_lid_entries, num_obj, global_ids,
local_ids, num_edges, nbor_global_id, nbor_procs, wgt_dim, ewgts, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries, num_obj
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: num_edges
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: nbor_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: nbor_procs
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: ewgts
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

Zoltan User's Guide: General Zoltan Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_lb.html (9 of 21) [12/1/2003 12:11:52 PM]

A ZOLTAN_EDGE_LIST_MULTI_FN query function returns lists of global IDs, processor IDs, and optionally edge
weights for objects sharing edges with objects specified in the global_ids input array; objects share edges when they must
share information with other objects. The arrays for the returned neighbor lists are allocated by Zoltan; their size is
determined by a calls to ZOLTAN_NUM_EDGES_MULTI_FN or ZOLTAN_NUM_EDGES_FN query functions.

Function Type: ZOLTAN_EDGE_LIST_MULTI_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 num_obj The number of object IDs in arrays global_ids and local_ids.
 global_ids Array of global IDs of objects whose edge lists should be returned.
 local_ids Array of local IDs of objects whose edge lists should be returned.
 num_edges An array containing numbers of edges for each object in global_ids. For object i (specified by

global_ids[i*num_gid_entries] and local_ids[i*num_lid_entries], i=0,1,...,num_obj-1), the
number of edges is stored in num_edges[i].

 nbor_global_id Upon return, an array of global IDs of objects sharing edges with the objects specified in
global_ids. For object i (specified by global_ids[i*num_gid_entries] and
local_ids[i*num_lid_entries], i=0,1,...,num_obj-1), edges are stored in
nbor_global_id[sum*num_gid_entries] to
nbor_global_id[(sum+num_edges[i])*num_gid_entries-1], where sum = the sum of
num_edges[j] for j=0,1,...,i-1.

 nbor_procs Upon return, an array of processor IDs that identifies where the neighboring objects reside. For
neighboring object i (stored in nbor_global_id[i*num_gid_entries]), the processor owning the
neighbor is stored in nbor_procs[i].

 wgt_dim The number of weights associated with an edge (typically 1), or 0 if edge weights are not
requested. This value is set through the parameter EDGE_WEIGHT_DIM.

 ewgts Upon return, an array of edge weights, where ewgts[i*wgt_dim:(i+1)*wgt_dim-1]
corresponds to the weights for the ith edge. If wgt_dim=0, the return value of ewgts is undefined
and may be NULL.

 ierr Error code to be set by function.

C: typedef void ZOLTAN_EDGE_LIST_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, ZOLTAN_ID_PTR nbor_global_id,
int *nbor_procs, int wgt_dim, float *ewgts, int *ierr);

Zoltan User's Guide: General Zoltan Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_lb.html (10 of 21) [12/1/2003 12:11:53 PM]

FORTRAN: SUBROUTINE Get_Edge_List(data, num_gid_entries, num_lid_entries, global_id, local_id,
nbor_global_id, nbor_procs, wgt_dim, ewgts, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: nbor_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: nbor_procs
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: ewgts
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_EDGE_LIST_FN query function returns lists of global IDs, processor IDs, and optionally edge weights for
objects sharing an edge with a given object (i.e., objects that must share information with the given object). The arrays for
the returned neighbor lists are allocated by Zoltan; their size is determined by a call to
ZOLTAN_NUM_EDGES_MULTI_FN or ZOLTAN_NUM_EDGES_FN query functions.

Function Type: ZOLTAN_EDGE_LIST_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 global_id The global ID of the object for which an edge list should be returned.
 local_id The local ID of the object for which an edge list should be returned.
 nbor_global_id Upon return, an array of global IDs of objects sharing edges with the given object.
 nbor_procs Upon return, an array of processor IDs that identifies where the neighboring objects reside.
 wgt_dim The number of weights associated with an edge (typically 1), or 0 if edge weights are not

requested. This value is set through the parameter EDGE_WEIGHT_DIM.

 ewgts Upon return, an array of edge weights, where ewgts[i*wgt_dim:(i+1)*wgt_dim-1]
corresponds to the weights for the ith edge. If wgt_dim=0, the return value of ewgts is undefined
and may be NULL.

 ierr Error code to be set by function.

Tree-based Functions

C: typedef int ZOLTAN_NUM_COARSE_OBJ_FN (void *data, int *ierr);

Zoltan User's Guide: General Zoltan Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_lb.html (11 of 21) [12/1/2003 12:11:53 PM]

FORTRAN: FUNCTION Get_Num_Coarse_Obj(data, ierr)
INTEGER(Zoltan_INT) :: Get_Num_Coarse_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_NUM_COARSE_OBJ_FN query function returns the number of objects (elements) in the initial coarse
grid.

Function Type: ZOLTAN_NUM_COARSE_OBJ_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 ierr Error code to be set by function.
Returned Value:
 int The number of objects in the coarse grid.

C: typedef void ZOLTAN_COARSE_OBJ_LIST_FN (void *data, int num_gid_entries,
int num_lid_entries, ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids, int *assigned,
int *num_vert, ZOLTAN_ID_PTR vertices, int *in_order, ZOLTAN_ID_PTR in_vertex,
ZOLTAN_ID_PTR out_vertex, int *ierr);

FORTRAN: SUBROUTINE Get_Coarse_Obj_List(data, num_gid_entries, num_lid_entries, global_ids, local_ids,
assigned, num_vert, vertices, in_order, in_vertex, out_vertex, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: assigned, num_vert, vertices, in_vertex,
out_vertex
INTEGER(Zoltan_INT), INTENT(OUT) :: in_order, ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_COARSE_OBJ_LIST_FN query function returns lists of global IDs, local IDs, vertices, and order
information for all objects (elements) of the initial coarse grid. The vertices are designated by a global ID such that if two
elements share a vertex then the same ID designates that vertex in both elements and on all processors. The user may
choose to provide the order in which the elements should be traversed or have Zoltan determine the order. If the user
provides the order, then entry and exit vertices for a path through the elements may also be provided. The arrays for the
returned values are allocated by Zoltan; their size is determined by a call to a ZOLTAN_NUM_COARSE_OBJ_FN
query function.

Function Type: ZOLTAN_COARSE_OBJ_LIST_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 global_ids Upon return, an array of global IDs of all objects in the coarse grid.

Zoltan User's Guide: General Zoltan Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_lb.html (12 of 21) [12/1/2003 12:11:53 PM]

 local_ids Upon return, an array of local IDs of all objects in the coarse grid.
 assigned Upon return, an array of integers indicating whether or not each object is currently assigned to

this processor. A value of 1 indicates it is assigned to this processor; a value of 0 indicates it is
assigned to some other processor. For elements that have been refined, it is ignored unless
weights are assigned to interior nodes of the tree.

 num_vert Upon return, an array containing the number of vertices for each object.
 vertices Upon return, an array of global IDs of the vertices of each object. If the number of vertices for

objects 0 through i-1 is N, then the vertices for object i are in vertices[N*num_gid_entries:
(N+num_vert[i])*num_gid_entries]

 in_order Upon return, 1 if the user is providing the objects in the order in which they should be traversed,
or 0 if Zoltan should determine the order.

 in_vertex Upon return, an array of global IDs of the vertices through which to enter each element in the
user provided traversal. It is required only if the user is providing the order for the coarse grid
objects (i.e., in_order==1) and allowing Zoltan to select the order of the children in at least one
invocation of ZOLTAN_CHILD_LIST_FN.

 out_vertex Upon return, an array of global IDs of the vertex through which to exit each element in the user
provided traversal. The same provisions hold as for in_vertex.

 ierr Error code to be set by function.

C: typedef int ZOLTAN_FIRST_COARSE_OBJ_FN (void *data, int num_gid_entries,
int num_lid_entries, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, int *assigned,
int *num_vert, ZOLTAN_ID_PTR vertices, int *in_order, ZOLTAN_ID_PTR in_vertex,
ZOLTAN_ID_PTR out_vertex, int *ierr);

FORTRAN: FUNCTION Get_First_Coarse_Obj(data, num_gid_entries, num_lid_entries, global_id, local_id,
assigned, num_vert, vertices, in_order, in_vertex, out_vertex, ierr)
INTEGER(Zoltan_INT) :: Get_First_Coarse_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: assigned, num_vert, in_order, ierr
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: vertices, in_vertex, out_vertex

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_FIRST_COARSE_OBJ_FN query function initializes an iteration over the objects of the initial coarse
grid. It returns the global ID, local ID, vertices, and order information for the first object (element) of the initial coarse
grid. Subsequent calls to a ZOLTAN_NEXT_COARSE_OBJ_FN iterate over and return other objects from the coarse
grid. The vertices are designated by a global ID such that if two elements share a vertex then the same ID designates that
vertex in both elements and on all processors. The user may choose to provide the order in which the elements should be
traversed, or have Zoltan determine the order. If the user provides the order, then entry and exit vertices for a path through
the elements may also be provided.

Function Type: ZOLTAN_FIRST_COARSE_OBJ_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 global_ids Upon return, the global ID of the first object in the coarse grid.

Zoltan User's Guide: General Zoltan Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_lb.html (13 of 21) [12/1/2003 12:11:53 PM]

 local_ids Upon return, the local ID of the first object in the coarse grid.
 assigned Upon return, an integer indicating whether or not this object is currently assigned to this

processor. A value of 1 indicates it is assigned to this processor; a value of 0 indicates it is
assigned to some other processor. For elements that have been refined, it is ignored unless
weights are assigned to interior nodes of the tree.

 num_vert Upon return, the number of vertices for this object.
 vertices Upon return, an array of global IDs of the vertices of this object.
 in_order Upon return, 1 if the user is providing the objects in the order in which they should be traversed,

or 0 if Zoltan should determine the order.
 in_vertex Upon return, the vertex through which to enter this element in the user provided traversal. It is

required only if the user is providing the order for the coarse grid objects (i.e., in_order==1) and
allowing Zoltan to select the order of the children in at least one invocation of
ZOLTAN_CHILD_LIST_FN.

 out_vertex Upon return, the vertex through which to exit this element in the user provided traversal. The
same provisions hold as for in_vertex.

 ierr Error code to be set by function.
Returned Value:
 1 If global_id and local_id contain valid IDs of the first object in the coarse grid.
 0 If no coarse grid is available.

C: typedef int ZOLTAN_NEXT_COARSE_OBJ_FN (void *data, int num_gid_entries,
int num_lid_entries, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
ZOLTAN_ID_PTR next_global_id, ZOLTAN_ID_PTR next_local_id, int *assigned,
int *num_vert, ZOLTAN_ID_PTR vertices, ZOLTAN_ID_PTR in_vertex,
ZOLTAN_ID_PTR out_vertex, int *ierr);

FORTRAN: FUNCTION Get_Next_Coarse_Obj(data, num_gid_entries, num_lid_entries, global_id, local_id,
next_global_id, next_local_id, assigned, num_vert, vertices, in_vertex, out_vertex, ierr)
INTEGER(Zoltan_INT) :: Get_Next_Coarse_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: next_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: next_local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: assigned, num_vertex, ierr
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: vertices, in_vertex, out_vertex

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_NEXT_COARSE_OBJ_FN query function is an iterator function that returns the next object in the initial
coarse grid. The first object of the iteration is provided by a ZOLTAN_FIRST_COARSE_OBJ_FN query function.

Function Type: ZOLTAN_NEXT_COARSE_OBJ_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 global_id The global ID of the previous object in the coarse grid.

Zoltan User's Guide: General Zoltan Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_lb.html (14 of 21) [12/1/2003 12:11:53 PM]

 local_id The local ID of the previous object in the coarse grid.
 next_global_id Upon return, the global ID of the next object in the coarse grid.
 next_local_id Upon return, the local ID of the next object in the coarse grid.
 assigned Upon return, an integer indicating whether or not this object is currently assigned to this

processor. A value of 1 indicates it is assigned to this processor; a value of 0 indicates it is
assigned to some other processor. For elements that have been refined, it is ignored unless
weights are assigned to interior nodes of the tree.

 num_vert Upon return, the number of vertices for this object.
 vertices Upon return, an array of global IDs of the vertices of this object.
 in_vertex Upon return, the vertex through which to enter this element in the user provided traversal. It is

required only if the user is providing the order for the coarse grid objects (i.e., in_order==1) and
allowing Zoltan to select the order of the children in at least one invocation of
ZOLTAN_CHILD_LIST_FN.

 out_vertex Upon return, the vertex through which to exit this element in the user provided traversal. The
same provisions hold as for in_vertex.

 ierr Error code to be set by function.
Returned Value:
 1 If global_id and local_id contain valid IDs of the next object in the coarse grid.
 0 If no more objects are available.

C: typedef int ZOLTAN_NUM_CHILD_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, int *ierr);

FORTRAN: FUNCTION Get_Num_Child(data, num_gid_entries, num_lid_entries, global_id, local_id, ierr)
INTEGER(Zoltan_INT) :: Get_Num_Child
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_NUM_CHILD_FN query function returns the number of children of the element with the given global and
local IDs. If the element has not been refined, the number of children is 0.

Function Type: ZOLTAN_NUM_CHILD_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 global_id The global ID of the object for which the number of children is requested.
 local_id The local ID of the object for which the number of children is requested.
 ierr Error code to be set by function.
Returned Value:
 int The number of children.

Zoltan User's Guide: General Zoltan Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_lb.html (15 of 21) [12/1/2003 12:11:53 PM]

C: typedef void ZOLTAN_CHILD_LIST_FN (void *data, int num_gid_entries, int num_lid_entries,
ZOLTAN_ID_PTR parent_gid, ZOLTAN_ID_PTR parent_lid, ZOLTAN_ID_PTR child_gids,
ZOLTAN_ID_PTR child_lids, int *assigned, int *num_vert, ZOLTAN_ID_PTR vertices,
ZOLTAN_REF_TYPE *ref_type, ZOLTAN_ID_PTR in_vertex, ZOLTAN_ID_PTR out_vertex,
int *ierr);

FORTRAN: SUBROUTINE Get_Child_List(data, num_gid_entries, num_lid_entries, parent_gid, parent_lid,
child_gids, child_lids, assigned, num_vert, vertices, ref_type, in_vertex, out_vertex, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: parent_gid
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: parent_lid
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: child_gids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: child_lids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: assigned, num_vert, vertices, in_vertex,
out_vertex
INTEGER(Zoltan_INT), INTENT(OUT) :: ref_type, ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_CHILD_LIST_FN query function returns lists of global IDs, local IDs, vertices, and order information for
all children of a refined element. The vertices are designated by a global ID such that if two elements share a vertex then
the same ID designates that vertex in both elements and on all processors. The user may choose to provide the order in
which the children should be traversed, or have Zoltan determine the order based on the type of element refinement used
to create the children. If the user provides the order, then entry and exit vertices for a path through the elements may also
be provided. The arrays for the returned values are allocated by Zoltan; their size is determined by a call to a
ZOLTAN_NUM_CHILD_FN query function.

Function Type: ZOLTAN_CHILD_LIST_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 parent_gid The global ID of the object whose children are requested.
 parent_lid The local ID of the object whose children are requested.
 child_gids Upon return, an array of global IDs of all children of this object.
 child_lids Upon return, an array of local IDs of all children of this object.
 assigned Upon return, an array of integers indicating whether or not each child is currently assigned to

this processor. A value of 1 indicates it is assigned to this processor; a value of 0 indicates it is
assigned to some other processor. For children that have been further refined, it is ignored unless
weights are assigned to interior nodes of the tree.

 num_vert Upon return, an array containing the number of vertices for each object.
 vertices Upon return, an array of global IDs of the vertices of each object. If the number of vertices for

objects 0 through i-1 is N, then the vertices for object i are in vertices[N*num_gid_entries:
(N+num_vert[i])*num_gid_entries]

 ref_type Upon return, a value indicating what type of refinement was used to create the children. This
determines how the children will be ordered. The values currently supported are:
 ZOLTAN_TRI_BISECT Bisection of triangles.
 ZOLTAN_QUAD_QUAD Quadrasection of quadrilaterals.
 ZOLTAN_HEX3D_OCT Octasection of hexahedra.
 ZOLTAN_OTHER_REF All other forms of refinement.
 ZOLTAN_IN_ORDER Traverse the children in the order in which they are provided.

Zoltan User's Guide: General Zoltan Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_lb.html (16 of 21) [12/1/2003 12:11:53 PM]

 in_vertex Upon return, an array of global IDs of the vertex through which to enter each element in the user
provided traversal. It is required only if the user is providing the order for the children of this
element (i.e., ref_type==ZOLTAN_IN_ORDER) but does not provide the order for the children
of at least one of those children.

 out_vertex Upon return, an array of global IDs of the vertex through which to exit each element in the user
provided traversal. The same provisions hold as for in_vertex.

 ierr Error code to be set by function.

C: typedef void ZOLTAN_CHILD_WEIGHT_FN (void *data, int num_gid_entries,
int num_lid_entries, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, int wgt_dim,
float *obj_wgt, int *ierr);

FORTRAN: SUBROUTINE Get_Child_Weight(data, num_gid_entries, num_lid_entries, global_id, local_id,
wgt_dim, obj_wgt, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: obj_wgt
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_CHILD_WEIGHT_FN query function returns the weight of an object. Interior nodes of the refinement
tree as well as the leaves are allowed to have weights.

Function Type: ZOLTAN_CHILD_WEIGHT_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 global_id The global ID of the object whose weight is requested.
 local_id The local ID of the object whose weight is requested.
 wgt_dim The number of weights associated with an object (typically 1), or 0 if weights are not requested.

This value is set through the parameter OBJ_WEIGHT_DIM.

 obj_wgt Upon return, an array containing the object's weights. If wgt_dim=0, the return value of
obj_wgts is undefined and may be NULL.

 ierr Error code to be set by function.

Border Object Functions (currently not used)

C: typedef int ZOLTAN_NUM_BORDER_OBJ_FN (void *data, int nbor_proc, int *ierr);

Zoltan User's Guide: General Zoltan Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_lb.html (17 of 21) [12/1/2003 12:11:53 PM]

FORTRAN: FUNCTION Get_Num_Border_Obj(data, nbor_proc, ierr)
INTEGER(Zoltan_INT) :: Get_Num_Border_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: nbor_proc
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_NUM_BORDER_OBJ_FN query function returns the number of objects sharing a processor subdomain
border (in the communication graph of the application) with a given processor.

Function Type: ZOLTAN_NUM_BORDER_OBJ_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 nbor_proc The processor ID of the processor for which the number of border objects should be returned.
 ierr Error code to be set by function.
Returned Value:
 int The number of objects sharing a processor subdomain border with processor nbor_proc.

C: typedef void ZOLTAN_BORDER_OBJ_LIST_FN (void *data, int num_gid_entries,
int num_lid_entries, int nbor_proc, ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids,
int wgt_dim, float *obj_wgts, int *ierr);

FORTRAN: SUBROUTINE Get_Border_Obj_List(data, num_gid_entries, num_lid_entries, nbor_proc,
global_ids, local_ids, wgt_dim, obj_wgts, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: nbor_proc
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: obj_wgts
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_BORDER_OBJ_LIST_FN query function fills two arrays with information about the objects currently
assigned to the processor that share a processor subdomain border (in the communication graph of the application) with a
given processor. Both arrays are allocated (and subsequently freed) by Zoltan; their size is determined by a call to a
ZOLTAN_NUM_BORDER_OBJ_FN query function to get the array size. For certain Zoltan algorithms, either a
ZOLTAN_BORDER_OBJ_LIST_FN query function or a
ZOLTAN_FIRST_BORDER_OBJ_FN/ZOLTAN_NEXT_BORDER_OBJ_FN query-function pair must be
registered; however, both query options need not be provided.

Function Type: ZOLTAN_BORDER_OBJ_LIST_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

Zoltan User's Guide: General Zoltan Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_lb.html (18 of 21) [12/1/2003 12:11:53 PM]

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 nbor_proc The processor ID of the processor for which border objects should be returned.
 global_ids Upon return, an array of unique global IDs for all objects assigned to the processor that share a

subdomain border with nbor_proc.
 local_ids Upon return, an array of local IDs, the meaning of which can be determined by the application,

for all objects assigned to the processor that share a subdomain border with nbor_proc.
 wgt_dim The number of weights associated with an object (typically 1), or 0 if weights are not requested.

This value is set through the parameter OBJ_WEIGHT_DIM.

 obj_wgts Upon return, an array of object weights. Weights for object i are stored in
obj_wgts[(i-1)*wgt_dim:i*wgt_dim-1]. If wgt_dim=0, obj_wgts is undefined and may be
NULL.

 ierr Error code to be set by function.

C: typedef int ZOLTAN_FIRST_BORDER_OBJ_FN (void *data, int num_gid_entries,
int num_lid_entries, int nbor_proc, ZOLTAN_ID_PTR first_global_id,
ZOLTAN_ID_PTR first_local_id, int wgt_dim, float *first_obj_wgt, int *ierr);

FORTRAN: FUNCTION Get_First_Border_Obj(data, num_gid_entries, num_lid_entries, nbor_proc,
first_global_id, first_local_id, wgt_dim, first_obj_wgt, ierr)
INTEGER(Zoltan_INT) :: Get_First_Border_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: nbor_proc
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: first_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: first_local_id
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: first_obj_wgt
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_FIRST_BORDER_OBJ_FN query function initializes an iteration over objects assigned to the processor
that share a processor subdomain border with a given processor. It returns the global and local IDs of the first object on
the processor along the specified subdomain border. Subsequent calls to a ZOLTAN_NEXT_BORDER_OBJ_FN query
function iterate over and return other objects along the requested subdomain border. This query-function pair frees the
application from having to build an array of objects (as in ZOLTAN_BORDER_OBJ_LIST_FN) and allows Zoltan to
obtain only as much information about objects as it needs. For some algorithms, either a
ZOLTAN_BORDER_OBJ_LIST_FN query function or a
ZOLTAN_FIRST_BORDER_OBJ_FN/ZOLTAN_NEXT_BORDER_OBJ_FN query-function pair must be
registered; however, both query options need not be provided.

Function Type: ZOLTAN_FIRST_BORDER_OBJ_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 nbor_proc The processor ID of the processor for which border objects should be returned.
 first_global_id The returned value of the global ID for the first object; the value is ignored if there are no

objects along the border.

Zoltan User's Guide: General Zoltan Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_lb.html (19 of 21) [12/1/2003 12:11:53 PM]

 first_local_id The returned value of the local ID for the first object; the value is ignored if there are no objects
along the border.

 wgt_dim The number of weights associated with an object (typically 1), or 0 if weights are not requested.
This value is set through the parameter OBJ_WEIGHT_DIM.

 first_obj_wgt Upon return, the first object's weights; an array of size wgt_dim. Undefined if wgt_dim=0.
 ierr Error code to be set by function.
Returned Value:
 1 If first_global_id and first_local_id contain valid IDs of the first object along the processor

border.
 0 If no objects are available along this processor border.

C: typedef int ZOLTAN_NEXT_BORDER_OBJ_FN (void *data, int num_gid_entries,
int num_lid_entries, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, int nbor_proc,
ZOLTAN_ID_PTR next_global_id, ZOLTAN_ID_PTR next_local_id, int wgt_dim,
float *next_obj_wgt, int *ierr);

FORTRAN: FUNCTION Get_Next_Border_Obj(data, num_gid_entries, num_lid_entries, global_id, local_id,
nbor_proc, next_global_id, next_local_id, wgt_dim, next_obj_wgt, ierr)
INTEGER(Zoltan_INT) :: Get_Next_Border_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(IN) :: nbor_proc
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: next_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: next_local_id
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: next_obj_wgt
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_NEXT_BORDER_OBJ_FN query function is an iterator function which, when given an object assigned to
the processor and a neighboring processor ID, returns the next object assigned to the processor that shares a subdomain
border with the neighboring processor. The first object of the iteration is provided by a
ZOLTAN_FIRST_BORDER_OBJ_FN query function. This query-function pair frees the application from having to
build an array of objects (as in ZOLTAN_BORDER_OBJ_LIST_FN) and allows Zoltan to obtain only as much
information about objects as it needs. For some algorithms, either a ZOLTAN_BORDER_OBJ_LIST_FN query
function or a ZOLTAN_FIRST_BORDER_OBJ_FN/ZOLTAN_NEXT_BORDER_OBJ_FN query-function pair
must be registered; however, both query options need not be provided.

Function Type: ZOLTAN_NEXT_BORDER_OBJ_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 global_id The global ID of the previous object.
 local_id The local ID of the previous object.
 nbor_proc The processor ID of the processor for which border objects should be returned.

Zoltan User's Guide: General Zoltan Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_lb.html (20 of 21) [12/1/2003 12:11:53 PM]

 next_global_id The returned value of the global ID for the next object; the value is ignored if there are no more
objects along the border.

 next_local_id The returned value of the local ID for the next object; the value is ignored if there are no more
objects along the border.

 wgt_dim The number of weights associated with an object (typically 1), or 0 if weights are not requested.
This value is set through the parameter OBJ_WEIGHT_DIM.

 next_obj_wgt Upon return, the weights for the next object; an array of size wgt_dim. Undefined if wgt_dim=0.
 ierr Error code to be set by function.
Returned Value:
 1 If next_global_id and next_local_id contain valid IDs of the next object along the processor

border.
 0 If no more objects are available along this processor border.

[Table of Contents | Next: Migration Query Functions | Previous: Application-Registered Query Functions]

Zoltan User's Guide: General Zoltan Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_lb.html (21 of 21) [12/1/2003 12:11:53 PM]

Zoltan User's Guide | Next | Previous

Migration Query Functions

The following query functions must be registered to use any of the migration tools described in Migration Functions:

ZOLTAN_OBJ_SIZE_FN or ZOLTAN_OBJ_SIZE_MULTI_FN
ZOLTAN_PACK_OBJ_FN or ZOLTAN_PACK_OBJ_MULTI_FN
ZOLTAN_UNPACK_OBJ_FN or ZOLTAN_UNPACK_OBJ_MULTI_FN

The "MULTI_" versions of the packing/unpacking functions take lists of IDs as input and pack/unpack data for all objects
in the lists. Only one function of each type must be provided (e.g., either a ZOLTAN_PACK_OBJ_FN or
ZOLTAN_PACK_OBJ_MULTI_FN, but not both).

Optional, additional query functions for migration may also be registered; these functions are called at the beginning,
middle, and end of migration in Zoltan_Migrate.

ZOLTAN_PRE_MIGRATE_PP_FN
ZOLTAN_MID_MIGRATE_PP_FN
ZOLTAN_POST_MIGRATE_PP_FN

For backward compatibility with previous versions of Zoltan, the following functions may be used with
Zoltan_Help_Migrate.

ZOLTAN_PRE_MIGRATE_FN
ZOLTAN_MID_MIGRATE_FN
ZOLTAN_POST_MIGRATE_FN

C: typedef int ZOLTAN_OBJ_SIZE_FN(
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 ZOLTAN_ID_PTR global_id,
 ZOLTAN_ID_PTR local_id,
 int *ierr);

FORTRAN: FUNCTION Obj_Size(data, num_gid_entries, num_lid_entries, global_id, local_id, ierr)
INTEGER(Zoltan_INT) :: Obj_Size
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id, local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_OBJ_SIZE_FN query function returns the size (in bytes) of the data buffer that is needed to pack all of a
single object's data.

Function Type: ZOLTAN_OBJ_SIZE_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

Zoltan User's Guide: Migration Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_mig.html (1 of 12) [12/1/2003 12:11:56 PM]

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 global_id Pointer to the global ID of the object.
 local_id Pointer to the local ID of the object.
 ierr Error code to be set by function.
Returned Value:
 int The size (in bytes) of the required data buffer.

C: typedef void ZOLTAN_OBJ_SIZE_MULTI_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_ids,
 ZOLTAN_ID_PTR global_ids,
 ZOLTAN_ID_PTR local_ids,
 int *sizes,
 int *ierr);

FORTRAN: SUBROUTINE Obj_Size_Multi(data, num_gid_entries, num_lid_entries, num_ids, global_ids,
local_ids, sizes, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries, num_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids, local_ids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: sizes
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_OBJ_SIZE_MULTI_FN query function is the multiple-ID version of ZOLTAN_OBJ_SIZE_FN. For a
list of objects, it returns the per-objects sizes (in bytes) of the data buffers needed to pack object data.

Function Type: ZOLTAN_OBJ_SIZE_MULTI_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 num_ids The number of objects whose sizes are to be returned.

 global_ids An array of global IDs of the objects. The ID for the i-th object begins in
global_ids[i*num_gid_entries].

 local_ids An array of local IDs of the objects. The ID for the i-th object begins in
local_ids[i*num_lid_entries].

 sizes Upon return, array of sizes (in bytes) for each object in the ID lists.
 ierr Error code to be set by function.
Returned Value:
 int The size (in bytes) of the required data buffer.

Zoltan User's Guide: Migration Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_mig.html (2 of 12) [12/1/2003 12:11:56 PM]

C: typedef void ZOLTAN_PACK_OBJ_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 ZOLTAN_ID_PTR global_id,
 ZOLTAN_ID_PTR local_id,
 int dest_proc,
 int size,
 char *buf,
 int *ierr);

FORTRAN: SUBROUTINE Pack_Obj(data, num_gid_entries, num_lid_entries, global_id, local_id, dest_proc,
size, buf, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(IN) :: dest_proc, size
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: buf
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_PACK_OBJ_FN query function allows the application to tell Zoltan how to copy all needed data for a
given object into a communication buffer. The object's data can then be sent to another processor as part of data
migration. It may also perform other operations, such as removing the object from the processor's data structure. This
routine is called by Zoltan_Migrate for each object to be sent to another processor.

Function Type: ZOLTAN_PACK_OBJ_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 global_id The global ID of the object for which data should be copied into the communication buffer.
 local_id The local ID of the object for which data should be copied into the communication buffer.
 dest_proc The destination processor ID (i.e., the processor to which the object is being sent)
 size The size (in bytes) of the communication buffer for the specified object (as returned by the

ZOLTAN_OBJ_SIZE_FN query function).

 buf The starting address of the communication buffer into which the object's data should be packed.
 ierr Error code to be set by function.

Zoltan User's Guide: Migration Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_mig.html (3 of 12) [12/1/2003 12:11:56 PM]

C: typedef void ZOLTAN_PACK_OBJ_MULTI_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_ids,
 ZOLTAN_ID_PTR global_ids,
 ZOLTAN_ID_PTR local_ids,
 int *dest_proc,
 int *sizes,
 int *idx,
 char *buf,
 int *ierr);

FORTRAN: SUBROUTINE Pack_Obj_Multi(data, num_gid_entries, num_lid_entries, num_ids, global_ids,
local_ids, dest_proc, sizes, idx, buf, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries, num_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: dest_proc
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: sizes
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: idx
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: buf
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_PACK_OBJ_MULTI_FN query function is the multiple-ID version of a ZOLTAN_PACK_OBJ_FN. It
allows the application to tell Zoltan how to copy all needed data for a given list of objects into a communication buffer.

Function Type: ZOLTAN_PACK_OBJ_FN_MULTI_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 num_ids The number of objects to be packed.

 global_ids An array of global IDs of the objects. The ID for the i-th object begins in
global_ids[i*num_gid_entries].

 local_ids An array of local IDs of the objects. The ID for the i-th object begins in
local_ids[i*num_lid_entries].

 dest_proc An array of destination processor IDs (i.e., the processors to which the objects are being sent)
 sizes An array containing the per-object sizes (in bytes) of the communication buffer for each object.
 idx For each object, an index into the buf array giving the starting location of that object's data. Data

for the i-th object are stored in buf[idx[i]], buf[idx[i]+1], ..., buf[idx[i]+sizes[i]-1]. Because
Zoltan adds some tag information to packed data, idx[i] != sum[j=0,i-1](sizes[j]).

 buf The address of the communication buffer into which the objects' data should be packed.
 ierr Error code to be set by function.

Zoltan User's Guide: Migration Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_mig.html (4 of 12) [12/1/2003 12:11:56 PM]

C: typedef void ZOLTAN_UNPACK_OBJ_FN (
 void *data,
 int num_gid_entries,
 ZOLTAN_ID_PTR global_id,
 int size,
 char *buf,
 int *ierr);

FORTRAN: SUBROUTINE Unpack_Obj(data, num_gid_entries, global_id, size, buf, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN) :: size
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: buf
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_UNPACK_OBJ_FN query function allows the application to tell Zoltan how to copy all needed data for a
given object from a communication buffer into the application's data structure. This operation is needed as the final step of
importing objects during data migration. The query function may also perform other computation, such as building
request lists for related data. This routine is called by Zoltan_Migrate for each object to be received by the processor.
(Note: a local ID for the object is not included in this function, as the local ID is local to the exporting, not the importing,
processor.)

Function Type: ZOLTAN_UNPACK_OBJ_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 global_id The global ID of the object whose data has been received in the communication buffer.
 size The size (in bytes) of the object's data in the communication buffer.
 buf The starting address of the communication buffer for this object.
 ierr Error code to be set by function.

C: typedef void ZOLTAN_UNPACK_OBJ_MULTI_FN (
 void *data,
 int num_gid_entries,
 int num_ids,
 ZOLTAN_ID_PTR global_ids,
 int *sizes,
 int *idx,
 char *buf,
 int *ierr);

Zoltan User's Guide: Migration Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_mig.html (5 of 12) [12/1/2003 12:11:56 PM]

FORTRAN: SUBROUTINE Unpack_Obj_Multi(data, num_gid_entries, num_ids, global_ids, sizes, idx, buf, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: sizes
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: idx
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: buf
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_UNPACK_OBJ_MULTI_FN query function is the multiple-ID version of a
ZOLTAN_UNPACK_OBJ_FN. It allows the application to tell Zoltan how to copy all needed data for a given list of
objects from a communication buffer into the application's data structure.

Function Type: ZOLTAN_UNPACK_OBJ_MULTI_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_ids The number of objects to be unpacked.

 global_ids An array of global IDs of the objects. The ID for the i-th object begins in
global_ids[i*num_gid_entries].

 sizes An array containing the per-object sizes (in bytes) of the communication buffer for each object.
 idx For each object, an index into the buf array giving the starting location of that object's data. Data

for the i-th object are stored in buf[idx[i]], buf[idx[i]+1], ..., buf[idx[i]+sizes[i]-1]. Because
Zoltan adds some tag information to packed data, idx[i] != sum[j=0,i-1](sizes[j]).

 buf The address of the communication buffer from which data is unpacked.
 ierr Error code to be set by function.

C: typedef void ZOLTAN_PRE_MIGRATE_PP_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int *import_to_part,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs,
 int *export_to_part,
 int *ierr);

Zoltan User's Guide: Migration Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_mig.html (6 of 12) [12/1/2003 12:11:56 PM]

FORTRAN: SUBROUTINE Pre_Migrate_PP(data, num_gid_entries, num_lid_entries, num_import,
import_global_ids, import_local_ids, import_procs, import_to_part, num_export, export_global_ids,
export_local_ids, export_procs, export_to_part, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_to_part, export_to_part
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_PRE_MIGRATE_PP_FN query function performs any pre-processing desired by the application. If it is
registered, it is called at the beginning of the Zoltan_Migrate routine. The arguments passed to Zoltan_Migrate are
made available for use in the pre-processing routine.

Function Type: ZOLTAN_PRE_MIGRATE_PP_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 num_import The number of objects that will be received by this processor.
 import_global_ids An array of num_import global IDs of objects to be received by this processor. This array may

be NULL, as the processor does not necessarily need to know which objects it will receive.
 import_local_ids An array of num_import local IDs of objects to be received by this processor. This array may be

NULL, as the processor does not necessarily need to know which objects it will receive.
 import_procs An array of size num_import listing the processor IDs of the source processors. This array may

be NULL, as the processor does not necessarily need to know which objects is will receive.
 import_to_part An array of size num_import listing the partitions to which objects will be imported. This array

may be NULL, as the processor does not necessarily need to know from which objects it will
receive.

 num_export The number of objects that will be sent from this processor to other processors.
 export_global_ids An array of num_export global IDs of objects to be sent from this processor.
 export_local_ids An array of num_export local IDs of objects to be sent from this processor.
 export_procs An array of size num_export listing the processor IDs of the destination processors.
 export_to_part An array of size num_export listing the partitions to which objects will be sent.
 ierr Error code to be set by function.
Default:

No pre-processing is done if a ZOLTAN_PRE_MIGRATE_PP_FN is not registered.

Zoltan User's Guide: Migration Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_mig.html (7 of 12) [12/1/2003 12:11:56 PM]

C: typedef void ZOLTAN_MID_MIGRATE_PP_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int *import_to_part,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs,
 int *export_to_part,
 int *ierr);

FORTRAN: SUBROUTINE Mid_Migrate_PP(data, num_gid_entries, num_lid_entries, num_import,
import_global_ids, import_local_ids, import_procs, import_to_part, num_export, export_global_ids,
export_local_ids, export_procs, export_to_part, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_to_part, export_to_part
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_MID_MIGRATE_PP_FN query function performs any processing desired by the application between the
packing and unpacking of objects being migrated. If it is registered, it is called after export objects are packed in
Zoltan_Migrate; imported objects are unpacked after the ZOLTAN_MID_MIGRATE_PP_FN query function is called.
The arguments passed to Zoltan_Migrate are made available for use in the processing routine.

,

Function Type: ZOLTAN_MID_MIGRATE_PP_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 num_import The number of objects that will be received by this processor.
 import_global_ids An array of num_import global IDs of objects to be received by this processor. This array may

be NULL, as the processor does not necessarily need to know which objects it will receive.
 import_local_ids An array of num_import local IDs of objects to be received by this processor. This array may be

NULL, as the processor does not necessarily need to know which objects it will receive.
 import_procs An array of size num_import listing the processor IDs of the source processors. This array may

be NULL, as the processor does not necessarily need to know which objects is will receive.
 import_to_part An array of size num_import listing the partitions to which objects will be imported. This array

may be NULL, as the processor does not necessarily need to know from which objects it will
receive.

 num_export The number of objects that will be sent from this processor to other processors.

Zoltan User's Guide: Migration Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_mig.html (8 of 12) [12/1/2003 12:11:56 PM]

 export_global_ids An array of num_export global IDs of objects to be sent from this processor.
 export_local_ids An array of num_export local IDs of objects to be sent from this processor.
 export_procs An array of size num_export listing the processor IDs of the destination processors.
 export_to_part An array of size num_export listing the partitions to which objects will be sent.
 ierr Error code to be set by function.
Default:

No processing is done if a ZOLTAN_MID_MIGRATE_PP_FN is not registered.

C: typedef void ZOLTAN_POST_MIGRATE_PP_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int *import_to_part,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs,
 int *export_to_part,
 int *ierr);

FORTRAN: SUBROUTINE Post_Migrate_PP(data, num_gid_entries, num_lid_entries, num_import,
import_global_ids, import_local_ids, import_procs, import_to_part, num_export, export_global_ids,
export_local_ids, export_procs, export_to_part, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_to_part, export_to_part
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_POST_MIGRATE_PP_FN query function performs any post-processing desired by the application. If it is
registered, it is called at the end of the Zoltan_Migrate routine. The arguments passed to Zoltan_Migrate are made
available for use in the post-processing routine.

Function Type: ZOLTAN_POST_MIGRATE_PP_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the maximum

value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the maximum value
over all processors of the parameter NUM_LID_ENTRIES.

 num_import The number of objects that will be received by this processor.
 import_global_ids An array of num_import global IDs of objects to be received by this processor. This array may

be NULL, as the processor does not necessarily need to know which objects it will receive.

Zoltan User's Guide: Migration Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_mig.html (9 of 12) [12/1/2003 12:11:56 PM]

 import_local_ids An array of num_import local IDs of objects to be received by this processor. This array may be
NULL, as the processor does not necessarily need to know which objects it will receive.

 import_procs An array of size num_import listing the processor IDs of the source processors. This array may
be NULL, as the processor does not necessarily need to know which objects is will receive.

 import_to_part An array of size num_import listing the partitions to which objects will be imported. This array
may be NULL, as the processor does not necessarily need to know from which objects it will
receive.

 num_export The number of objects that will be sent from this processor to other processors.
 export_global_ids An array of num_export global IDs of objects to be sent from this processor.
 export_local_ids An array of num_export local IDs of objects to be sent from this processor.
 export_procs An array of size num_export listing the processor IDs of the destination processors.
 export_to_part An array of size num_export listing the partitions to which objects will be sent.
 ierr Error code to be set by function.
Default:

No post-processing is done if a ZOLTAN_POST_MIGRATE_PP_FN is not registered.

C: typedef void ZOLTAN_PRE_MIGRATE_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs,
 int *ierr);

FORTRAN: SUBROUTINE Pre_Migrate(data, num_gid_entries, num_lid_entries, num_import,
import_global_ids, import_local_ids, import_procs, num_export, export_global_ids, export_local_ids,
export_procs, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_PRE_MIGRATE_FN query function performs any pre-processing desired by applications using
Zoltan_Help_Migrate. Its function is analogous to ZOLTAN_PRE_MIGRATE_PP_FN, but it cannot be used with
Zoltan_Migrate.

Function Type: ZOLTAN_PRE_MIGRATE_FN_TYPE
Arguments:

All arguments are analogous to those in ZOLTAN_PRE_MIGRATE_PP_FN.
Partition-assignment arguments import_to_part and export_to_part are not included, as
processor and partitions numbers are considered to be the same in Zoltan_Help_Migrate.

Zoltan User's Guide: Migration Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_mig.html (10 of 12) [12/1/2003 12:11:56 PM]

Default:
No pre-processing is done if a ZOLTAN_PRE_MIGRATE_FN is not registered.

C: typedef void ZOLTAN_MID_MIGRATE_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs,
 int *ierr);

FORTRAN: SUBROUTINE Mid_Migrate(data, num_gid_entries, num_lid_entries, num_import,
import_global_ids, import_local_ids, import_procs, num_export, export_global_ids, export_local_ids,
export_procs, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_MID_MIGRATE_FN query function performs any mid-migration processing desired by applications using
Zoltan_Help_Migrate. Its function is analogous to ZOLTAN_MID_MIGRATE_PP_FN, but it cannot be used with
Zoltan_Migrate.

Function Type: ZOLTAN_MID_MIGRATE_FN_TYPE
Arguments:

All arguments are analogous to those in ZOLTAN_MID_MIGRATE_PP_FN.
Partition-assignment arguments import_to_part and export_to_part are not included, as
processor and partitions numbers are considered to be the same in Zoltan_Help_Migrate.

Default:
No processing is done if a ZOLTAN_MID_MIGRATE_FN is not registered.

Zoltan User's Guide: Migration Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_mig.html (11 of 12) [12/1/2003 12:11:56 PM]

C: typedef void ZOLTAN_POST_MIGRATE_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs,
 int *ierr);

FORTRAN: SUBROUTINE Post_Migrate(data, num_gid_entries, num_lid_entries, num_import,
import_global_ids, import_local_ids, import_procs, num_export, export_global_ids, export_local_ids,
export_procs, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_global_ids, export_global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_local_ids, export_local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or REAL(Zoltan_FLOAT),
DIMENSION(*) or REAL(Zoltan_DOUBLE), DIMENSION(*) or TYPE(Zoltan_User_Data_x)
where x is 1, 2, 3 or 4. See the section on Fortran query functions for an explanation.

A ZOLTAN_POST_MIGRATE_FN query function performs any post-processing desired by applications using
Zoltan_Help_Migrate. Its function is analogous to ZOLTAN_POST_MIGRATE_PP_FN, but it cannot be used with
Zoltan_Migrate.

Function Type: ZOLTAN_POST_MIGRATE_FN_TYPE
Arguments:

All arguments are analogous to those in ZOLTAN_POST_MIGRATE_PP_FN.
Partition-assignment arguments import_to_part and export_to_part are not included, as
processor and partitions numbers are considered to be the same in Zoltan_Help_Migrate.

Default:
No post-processing is done if a ZOLTAN_POST_MIGRATE_FN is not registered.

[Table of Contents | Next: Zoltan Parameters and Output Levels | Previous: Load-Balancing Query Functions]

Zoltan User's Guide: Migration Query Functions

file:///F|/docs/Zoltan_html/ug_html/ug_query_mig.html (12 of 12) [12/1/2003 12:11:56 PM]

Zoltan User's Guide | Next | Previous

Zoltan Parameters and Output Levels

The behavior of Zoltan is controlled by several parameters and debugging-output levels. These parameters can be set by
calls to Zoltan_Set_Param. Reasonable default values for all parameters are specified by Zoltan. Many of the parameters
are specific to individual algorithms, and are listed in the descriptions of those algorithms. However, the parameters
below have meaning across the entire library.

General Parameters

The following parameters apply to the entire Zoltan library. While reasonable default values for all parameters are
specified by Zoltan, applications can change these values through calls to Zoltan_Set_Param.

Parameters:
 NUM_GID_ENTRIES The number of unsigned integers that should be used to represent a global identifier (ID).

Values greater than zero are accepted.
 NUM_LID_ENTRIES The number of unsigned integers that should be used to represent a local identifier (ID).

Values greater than or equal to zero are accepted.
 DEBUG_LEVEL An integer indicating how much debugging information is printed by Zoltan. Higher values

of DEBUG_LEVEL produce more output and potentially slow down Zoltan's computations.
The least output is produced when DEBUG_LEVEL= 0. DEBUG_LEVEL primarily
controls Zoltan's behavior; most algorithms have their own parameters to control their output
level. Values used within Zoltan are listed below.
Note: Because some debugging levels use processor synchronization, all processors should
use the same value of DEBUG_LEVEL.

 DEBUG_PROCESSOR Processor number from which trace output should be printed when DEBUG_LEVEL is 5.

 DEBUG_MEMORY Integer indicating the amount of low-level debugging information about memory-allocation
should be kept by Zoltan's Memory Management utilities. Valid values are 0, 1, 2, and 3.

 OBJ_WEIGHT_DIM The number of weights associated with an object. If this parameter is zero, all objects have
equal weight. Some algorithms may not support multiple (multidimensional) weights.

 EDGE_WEIGHT_DIM The number of weights associated with an edge. If this parameter is zero, all edges have
equal weight. Many algorithms do not support multiple (multidimensional) weights.

 TIMER The timer with which you wish to measure time. Valid choices are wall (based on
MPI_Wtime), cpu (based on the ANSI C library function clock), and user. The resolution
may be poor, as low as 1/60th of a second, depending upon your platform.

 USE_MACHINE_DESC Currently unused; will be used when heterogeneous computers are supported.
 MACHINE_DESC_FILE Currently unused; will be used when heterogeneous computers are supported.
Default Values:

NUM_GID_ENTRIES = 1
NUM_LID_ENTRIES = 1
DEBUG_LEVEL = 1
DEBUG_PROCESSOR = 0
DEBUG_MEMORY = 1
OBJ_WEIGHT_DIM = 0
EDGE_WEIGHT_DIM = 0
TIMER = wall
USE_MACHINE_DESC = 0
MACHINE_DESC_FILE = /etc/local/Zoltan_Machine_Desc

Zoltan User's Guide: Algorithms

file:///F|/docs/Zoltan_html/ug_html/ug_param.html (1 of 2) [12/1/2003 12:11:57 PM]

Debugging Levels in Zoltan

The DEBUG_LEVEL parameter determines how much debugging information is printed to stdout by Zoltan. It is set by a
call to Zoltan_Set_Param. Higher values of DEBUG_LEVEL produce more output and can slow down Zoltan's
computations, especially when the output is printed by one processor at a time. The least output is produced when
DEBUG_LEVEL = 0.

Descriptions of the output produced by Zoltan for each value of DEBUG_LEVEL are included below. For a given
DEBUG_LEVEL value n, all output for values less than or equal to n is produced.

Some high debugging levels use processor synchronization to force processors to write one-at-a-time. For example,
when DEBUG_LEVEL is greater than or equal to eight, each processor writes its list in turn so that the lists from all
processors are not jumbled together in the output. This synchronization requires all processors to use the same value of
DEBUG_LEVEL.

DEBUG_LEVEL Output Produced
 0 Quiet mode; no output unless an error or warning is produced.
 1 Values of all parameters set by Zoltan_Set_Param and used by Zoltan.

 2 Timing information for Zoltan's main routines.
 3 Timing information within Zoltan's algorithms (support by algorithms is optional).
 4
 5 Trace information (enter/exit) for major Zoltan interface routines (printed by the processor specified

by the DEBUG_PROCESSOR parameter).

 6 Trace information (enter/exit) for major Zoltan interface routines (printed by all processors).
 7 More detailed trace information in major Zoltan interface routines.
 8 List of objects to be imported to and exported from each processor. ¹
 9
 10 Maximum debug output; may include algorithm-specific output. ¹
¹ Output may be serialized; that is, one processor may have to complete its output before the next processor is allowed
to begin its output. This serialization is not scalable and can significantly increase execution time on large number of
processors.

[Table of Contents | Next: Load-Balancing Algorithms | Previous: Migration Query Functions]

Zoltan User's Guide: Algorithms

file:///F|/docs/Zoltan_html/ug_html/ug_param.html (2 of 2) [12/1/2003 12:11:57 PM]

Zoltan User's Guide | Next | Previous

Load-Balancing Algorithms

The following dynamic load-balancing algorithms are currently included in the Zoltan library:

Recursive Coordinate Bisection (RCB)
Recursive Inertial Bisection (RIB)
Hilbert Space-Filling Curve (HSFC)
Refinement Tree Based Partitioning (REFTREE)
ParMETIS (PARMETIS)
Jostle (JOSTLE)
Octree Partitioning (OCTPART)

The parenthetical string is the parameter value for LB_METHOD parameter; the parameter is set through a call to
Zoltan_Set_Param.

For further analysis and discussion of the algorithms, see [Hendrickson and Devine].

Load-Balancing Parameters

While the overall behavior of Zoltan is controlled by general Zoltan parameters, the behavior of each load-balancing
method is controlled by parameters specific to partitioning which are also set by calls to Zoltan_Set_Param. Many of
these parameters are specific to individual partitioning algorithms, and are listed in the descriptions of the individual
algorithms. However, several have meaning across multiple partitioning algorithms. These load-balancing parameters are
described below. Unless indicated otherwise, these parameters apply to both Zoltan_LB_Partition and
Zoltan_LB_Balance.

Parameters:
 LB_METHOD The load-balancing algorithm used by Zoltan is specified by this parameter.

Valid values are

"RCB" (for recursive coordinate bisection),
"RIB" (for recursive inertial bisection),
"HSFC" (for Hilbert space-filling curve partitioning),
"PARMETIS" (for any of the methods in the ParMETIS
library),
"JOSTLE" (for any of the methods in the Jostle library),
"OCTPART" (for octree partitioning),
"REFTREE" (for refinement tree based partitioning), and
"NONE" (for no load-balancing).

 NUM_GLOBAL_PARTITIONS The total number of partitions to be generated by a call to
Zoltan_LB_Partition. Integer values greater than zero are accepted. Not valid
for Zoltan_LB_Balance.

 NUM_LOCAL_PARTITIONS The number of partitions to be generated on this processor by a call to
Zoltan_LB_Partition. Integer values greater than zero are accepted. Not valid
for Zoltan_LB_Balance.

 RETURN_LISTS The lists returned by calls to Zoltan_LB_Partition or Zoltan_LB_Balance.
Valid values are "IMPORT" (to return only information about objects to be
imported to a processor), "EXPORT" (to return only information about objects
to be exported from a processor), "ALL" (to return both import and export
information) and "NONE" (to return neither import nor export information).

Zoltan User's Guide: Algorithms

file:///F|/docs/Zoltan_html/ug_html/ug_alg.html (1 of 2) [12/1/2003 12:11:58 PM]

 REMAP Within Zoltan_LB_Partition or Zoltan_LB_Balance, renumber partitions to
maximize overlap between the old decomposition and the new decomposition
(to reduce data movement from old to new decompositions). Valid values are
"0" (no remapping) or "1" (remapping). Requests for remapping are ignored
when, in the new decomposition, a partition is spread across multiple
processors or partition sizes are specified using Zoltan_LB_Set_Part_Sizes.

 IMBALANCE_TOL The amount of load imbalance the partitioning algorithm should deem
acceptable. The load on each processor is computed as the sum of the weights
of objects it is assigned. The imbalance is then computed as the maximum load
divided by the average load. An value for IMBALANCE_TOL of 1.2 indicates
that 20% imbalance is OK; that is, the maximum over the average shouldn't
exceed 1.2.

 MIGRATE_ONLY_PROC_CHANGES If this value is set to TRUE (non-zero), Zoltan's migration functions will
migrate only objects moving to new processors. They will not migrate objects
for which only the partition number has changed; the objects' processor
numbers must change as well. If this value is set to FALSE (zero), Zoltan's
migration functions will migrate all objects with new partition or processor
assignments.

 AUTO_MIGRATE If this value is set to TRUE (non-zero), Zoltan will automatically perform the
data migration during calls to Zoltan_LB_Partition or Zoltan_LB_Balance.
A full discussion of automatic migration can be found in the description of the
migration interface functions.

Default Values:
LB_METHOD = RCB
NUM_GLOBAL_PARTITIONS = Number of processors specified in
Zoltan_Create.

NUM_LOCAL_PARTITIONS = 1
RETURN_LISTS = ALL
REMAP = 1
IMBALANCE_TOL = 1.1
MIGRATE_ONLY_PROC_CHANGES = 1
AUTO_MIGRATE = FALSE

[Table of Contents | Next: Recursive Coordinate Bisection (RCB) | Previous: Zoltan Parameters and Output Levels]

Zoltan User's Guide: Algorithms

file:///F|/docs/Zoltan_html/ug_html/ug_alg.html (2 of 2) [12/1/2003 12:11:58 PM]

Zoltan User's Guide | Next | Previous

Recursive Coordinate Bisection (RCB)

An implementation of Recursive Coordinate Bisection (RCB) due to Steve Plimpton of Sandia National Laboratories is
included in Zoltan. RCB was first proposed as a static load-balancing algorithm by Berger and Bokhari, but is attractive as
a dynamic load-balancing algorithm because it implicitly produces incremental partitions. In RCB, the computational
domain is first divided into two regions by a cutting plane orthogonal to one of the coordinate axes so that half the work
load is in each of the sub-regions. The splitting direction is determined by computing in which coordinate direction the set
of objects is most elongated, based upon the geometric locations of the objects. The sub-regions are then further divided
by recursive application of the same splitting algorithm until the number of sub-regions equals the number of processors.
Although this algorithm was first devised to cut into a number of sets which is a power of two, the set sizes in a particular
cut needn't be equal. By adjusting the partition sizes appropriately, any number of equally-sized sets can be created. If the
parallel machine has processors with different speeds, sets with nonuniform sizes can also be easily generated. The Zoltan
implementation of RCB has several parameters which can be modified by the Zoltan_Set_Param function.

Method String: RCB
Parameters:
 RCB_OVERALLOC The amount by which to over-allocate temporary storage arrays for objects within the

RCB algorithm when additional storage is due to changes in processor assignments.
1.0 = no extra storage allocated; 1.5 = 50% extra storage; etc.

 RCB_REUSE Flag to indicate whether to use previous cuts as initial guesses for the current RCB
invocation.
0 = don't use previous cuts; 1 = use previous cuts.

 RCB_OUTPUT_LEVEL Flag controlling the amount of timing and diagnostic output the routine produces.
0 = no output; 1 = print summary; 2 = print data for each processor.

 CHECK_GEOM Flag controlling the invocation of input and output error checking.
0 = don't do checking; 1 = do checking.

 KEEP_CUTS Should information about the cuts determining the RCB decomposition be retained? It
costs a bit of time to do so, but this information is necessary if application wants to add
more objects to the decomposition via calls to Zoltan_LB_Point_PP_Assign or to
Zoltan_LB_Box_PP_Assign.
0 = don't keep cuts; 1 = keep cuts.

 RCB_LOCK_DIRECTIONS Flag that determines whether the order of the directions of the cuts is kept constant
after they are determined the first time RCB is called.
0 = don't lock directions; 1 = lock directions.

 RCB_SET_DIRECTIONS If this flag is set, the order of cuts is changed so that all of the cuts in any direction are
done as a group. The number of cuts in each direction is determined and then the value
of the parameter is used to determine the order that those cuts are made in. When 1D
and 2D problems are partitioned, the directions corresponding to unused dimensions
are ignored.
0 = don't order cuts; 1 = xyz; 2 = xzy; 3 = yzx; 4 = yxz; 5 = zxy; 6 = zyx;

 RCB_RECTILINEAR_BLOCKS Flag controlling the shape of the resulting regions. If this option is specified, then
when a cut is made, all of the dots located on the cut are moved to the same side of the
cut. The resulting regions are then rectilinear. When these dots are treated as a group,
then the resulting load balance may not be as good as when the group of dots is split
by the cut.
0 = move dots individually; 1 = move dots in groups.

Default:
RCB_OVERALLOC = 1.0
RCB_REUSE = 0
RCB_OUTPUT_LEVEL = 0
CHECK_GEOM = 1

Zoltan User's Guide: RCB

file:///F|/docs/Zoltan_html/ug_html/ug_alg_rcb.html (1 of 2) [12/1/2003 12:11:58 PM]

KEEP_CUTS = 0
RCB_LOCK_DIRECTIONS = 0
RCB_SET_DIRECTIONS = 0
RCB_RECTILINEAR_BLOCKS = 0

Required Query Functions:
ZOLTAN_NUM_OBJ_FN

ZOLTAN_OBJ_LIST_FN or
ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN pair

ZOLTAN_NUM_GEOM_FN

ZOLTAN_GEOM_MULTI_FN or ZOLTAN_GEOM_FN

[Table of Contents | Next: Recursive Inertial Bisection (RIB) | Previous: Load-Balancing Algorithms]

Zoltan User's Guide: RCB

file:///F|/docs/Zoltan_html/ug_html/ug_alg_rcb.html (2 of 2) [12/1/2003 12:11:58 PM]

Zoltan User's Guide | Next | Previous

Recursive Inertial Bisection (RIB)

An implementation of Recursive Inertial Bisection (RIB) is included in Zoltan. RIB was first proposed as a static
load-balancing algorithm by Taylor and Nour-Omid. RIB is similar to RCB in that it divides the domain based on the
location of the objects being partitioned by use of cutting planes. In RIB, the computational domain is first divided into
two regions by a cutting plane orthogonal to the longest direction of the domain so that half the work load is in each of the
sub-regions. The sub-regions are then further divided by recursive application of the same splitting algorithm until the
number of sub-regions equals the number of processors. Although this algorithm was first devised to cut into a number of
sets which is a power of two, the set sizes in a particular cut needn't be equal. By adjusting the partition sizes
appropriately, any number of equally-sized sets can be created. If the parallel machine has processors with different
speeds, sets with nonuniform sizes can also be easily generated. The Zoltan implementation of RIB has several parameters
which can be modified by the Zoltan_Set_Param function.

Method String: RIB
Parameters:
 RIB_OVERALLOC The amount by which to over-allocate temporary storage arrays for objects within the

RIB algorithm when additional storage is due to changes in processor assignments.
1.0 = no extra storage allocated; 1.5 = 50% extra storage; etc.

 RIB_OUTPUT_LEVEL Flag controlling the amount of timing and diagnostic output the routine produces.
0 = no output; 1 = print summary; 2 = print data for each processor.

 CHECK_GEOM Flag controlling the invocation of input and output error checking.
0 = don't do checking; 1 = do checking.

 KEEP_CUTS Should information about the cuts determining the RIB decomposition be retained? It
costs a bit of time to do so, but this information is necessary if application wants to add
more objects to the decomposition via calls to Zoltan_LB_Point_PP_Assign or to
Zoltan_LB_Box_PP_Assign.
0 = don't keep cuts; 1 = keep cuts.

Default:
RIB_OVERALLOC = 1.0
RIB_OUTPUT_LEVEL = 0
CHECK_GEOM = 1
KEEP_CUTS = 0

Required Query Functions:
ZOLTAN_NUM_OBJ_FN

ZOLTAN_OBJ_LIST_FN or
ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN pair

ZOLTAN_NUM_GEOM_FN

ZOLTAN_GEOM_MULTI_FN or ZOLTAN_GEOM_FN

[Table of Contents | Next: Hilbert Space-Filling Curve Partitioning | Previous: Recursive Coordinate Bisection (RCB)]

Zoltan User's Guide: RIB

file:///F|/docs/Zoltan_html/ug_html/ug_alg_rib.html [12/1/2003 12:11:58 PM]

Zoltan User's Guide | Next | Previous

Hilbert Space Filling Curve (HSFC)

This partitioning algorithm is loosely based on the 2D & 3D Hilbert tables used in the Octree partitioner and on the BSFC
partitioning implementation by Andrew C. Bauer, Department of Engineering, State University of New York at Buffalo,
as his summer project at SNL in 2001. The box assign algorithm is loosely based on the papers by Lawder referenced both
in the developers guide and the code itself. NOTE: This code can be trivially extended to any space filling curve by
providing the tables implimenting the curve's state transition diagram. The only dependance on the curve is through the
tables and the box assign algorithm will work for all space filling curves (if we have their tables.)

The Inverse Hilbert Space-Filling Curve functions map a point in one, two or three dimensions into the interval [0,1]. The
Hilbert functions that map [0, 1] to normal spatial coordinates are also provided. (The one-dimensional inverse Hilbert
curve is defined here as the identity function, f(x)=x for all x.)

The algorithm seeks to divide [0,1] into P intervals each containing the same weight of objects associated to these
intervals by their inverse Hilbert coordinates. N bins are created (where N > P) to partition [0,1]. The weights in each bin
are summed across all processors. A greedy algorithm sums the bins (from left to right) placing a cut when the desired
weight for current partition interval is achieved. This process is repeated as needed to improve partitioning tolerance by a
technique that maintains the same total number of bins but refines the bins previously containing a cut.

This code returns an warning if the final imbalance exceeds the user specified tolerance.

This code implements both the point assign and box assign functionality. The point assign determines an appropriate
partition (associated with a specific group of processors) for a new point. The box assign determines the list of processors
whose associated subdomains intersect the given box. In order to use either of these routines, the user parameter
KEEP_CUTS must be turned on. Both point assign and box assign now work for points or boxes anywhere in space even
if they are exterior to the original bounding box. If a partition is empty (due to the partition being assigned zero work), it
is not included in the list of partitions returned by box assign. Note: the original box assign algorithm was not rigorous
and may have missed partitions. This version is both rigorous and fast.

The Zoltan implementation of HSFC has one parameter that can be modified by the Zoltan_Set_Param function.

Please refer to the Zoltan Developers Guide, Appendix: Hilbert Space Filling Curve (HSFC) for more detailed
information about these algorithms.

Method String: HSFC
Parameters:
 KEEP_CUTS Information about cuts and bounding box is necessary if the application wants to add more objects

to the decomposition via calls to Zoltan_LB_Point_PP_Assign or to
Zoltan_LB_Box_PP_Assign.
0 = don't keep cuts; 1 = keep cuts.

Default:
KEEP_CUTS = 0

Required Query
Functions:

ZOLTAN_NUM_OBJ_FN

ZOLTAN_OBJ_LIST_FN or ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN pair

ZOLTAN_NUM_GEOM_FN

ZOLTAN_GEOM_MULTI_FN or ZOLTAN_GEOM_FN

[Table of Contents | Next: Refinement Tree Partitioning | Previous: Recursive Inertial Bisection]

Zoltan User's Guide: HSFC

file:///F|/docs/Zoltan_html/ug_html/ug_alg_hsfc.html [12/1/2003 12:11:59 PM]

file:///F|/docs/Zoltan_html/dev_html/dev_hsfc.html

Zoltan User's Guide | Next | Previous

Refinement Tree Partitioning (REFTREE)

The refinement tree based partitioning method is due to William Mitchell of the National Institute of Standards and
Technology [Mitchell]. It is closely related to the Octree and Space-Filling Curve methods, except it uses the tree that
represents the adaptive refinement process that created the grid. This tree is constructed through the tree-based query
functions.

Each node of the refinement tree corresponds to an element that occurred during the grid refinement process. The first
level of the tree (the children of the root of the tree) corresponds to the initial coarse grid, one tree node per initial
element. It is assumed that the initial coarse grid does not change through the execution of the program, except that the
local IDs, assignment of elements to processors, and weights can change. If any other aspect of the coarse grid changes,
then the Zoltan structure should be destroyed and recreated. The children of a node in the tree correspond to the elements
that were created when the corresponding element was refined. The children are ordered such that a traversal of the tree
creates a space-filling curve within each initial element. If the initial elements can be ordered with a contiguous path
through them, then the traversal creates a space-filling curve through all the elements. Each element has a designated "in"
vertex and "out" vertex, with the out vertex of one element being the same as the in vertex of the next element in the path,
in other words the path goes through a vertex to move from one element to the next (and does not go out the same vertex
it came in).

The user may allow Zoltan to determine the order of the coarse grid elements, or may specify the order, which might be
faster or produce a better path. If the user provides the order, then the in/out vertices must also be supplied. Similarly, the
user may specify the order and in/out vertices of the child elements, or allow Zoltan to determine them. If the user knows
how to provide a good ordering for the children, this may be significantly faster than the default general algorithm.
However, accelerated forms of the ordering algorithm are provided for certain types of refinement schemes and should be
used in those cases. See ZOLTAN_CHILD_LIST_FN. If the user always specifies the order, then the vertices and in/out
vertices are not used and do not have to be provided.

Weights are assigned to the nodes of the tree. These weights need not be only on the leaves (the elements of the final
grid), but can also be on interior nodes (for example, to represent work on coarse grids of a multigrid algorithm). The
default weights are 1.0 at the leaves and 0.0 at the interior nodes, which produces a partition based on the number of
elements in each partition. An initial tree traversal is used to sum the weights, and a second traversal to cut the
space-filling curve into appropriately-sized pieces and assign elements to partitions. The number of partitions is not
necessarily equal to the number of processors.

The following limitations should be removed in the future.

● For multicomponent weights, only the first component is used.

● Heterogeneous architectures are not supported, in the sense that the computational load is equally divided over the
processors. A vector of relative partition sizes is used to determine the weight assigned to each partition, but they are
currently all equal. In the future they should be input to reflect heterogeneity.

Method String: REFTREE
Parameters:
 REFTREE_HASH_SIZE The size of the hash table to map from global IDs to refinement tree nodes. Larger values

require more memory but may reduce search time.
Default:

REFTREE_HASH_SIZE = 16384
Required Query
Functions:

ZOLTAN_NUM_COARSE_OBJ_FN

ZOLTAN_COARSE_OBJ_LIST_FN or
ZOLTAN_FIRST_COARSE_OBJ_FN/ZOLTAN_NEXT_COARSE_OBJ_FN pair

ZOLTAN_NUM_CHILD_FN

Zoltan User's Guide: Refinement Tree Based Partition

file:///F|/docs/Zoltan_html/ug_html/ug_alg_reftree.html (1 of 2) [12/1/2003 12:11:59 PM]

ZOLTAN_CHILD_LIST_FN

ZOLTAN_CHILD_WEIGHT_FN

[Table of Contents | Next: ParMETIS | Previous: Hilbert Space-Filling Curve Partitioning]

Zoltan User's Guide: Refinement Tree Based Partition

file:///F|/docs/Zoltan_html/ug_html/ug_alg_reftree.html (2 of 2) [12/1/2003 12:11:59 PM]

Zoltan User's Guide | Next | Previous

ParMETIS

ParMETIS is a parallel library for graph partitioning (for static load balancing) and repartitioning (for dynamic load
balancing) developed at the University of Minnesota by Karypis, Schloegel and Kumar [Karypis and Kumar]. ParMETIS
is therefore strictly speaking not a method but rather a collection of methods. In the Zoltan context, ParMETIS is a
method with many sub-methods. Zoltan provides an interface to all the ParMETIS (sub-)methods. The user selects which
ParMETIS method to use through the parameter PARMETIS_METHOD. Most of the ParMETIS methods are based on
either multilevel Kernighan-Lin partitioning or a diffusion algorithm. The names of the ParMETIS methods used by
Zoltan are identical to those in the ParMETIS library. For further information about the various ParMETIS methods and
parameters, please consult the ParMETIS User's Guide.

Graph partitioning is a useful abstraction for load balancing. The main idea is to represent the computational application
as a weighted graph. The nodes or vertices in the graph correspond to objects in Zoltan. Each object may have a weight
that normally represents the amount of computation. The edges or arcs in the graph usually correspond to communication
costs. In graph partitioning, the problem is to find a partitioning of the graph (that is, each vertex is assigned to one out of
k possible sets called partitions) that minimizes the cut size (weight) subject to the partitions having approximately equal
size (weight). In repartitioning, it is assumed that a partitioning already exists. The problem is to find a good partitioning
that is also "similar" in some sense to the existing partitioning. This keeps the migration cost low. All the problems
described above are NP-hard so no efficient exact algorithm is known. We remark that in Zoltan 1.*, the number of
partitions is always the same as the number of MPI processes (which is normally equal to the number of processors).

We give only a brief summary of the various ParMETIS methods here; for more details see the ParMETIS documentation.
The methods fall into three categories:

Part* - Perform graph partitioning without consideration of the initial distribution.1.

AdaptiveRepart (ParMETIS 3) and Repart* (ParMETIS 2) - Incremental algorithms with small migration cost.2.

Refine* - Refines a given partitioning (balance). Can be applied multiple times to reduce the communication cost
(cut weight) if desired.

3.

As a rule of thumb, use one of the Part* methods if you have a poor initial balance and you are willing to spend some time
doing migration. One such case is static load balancing; that is, you need to balance only once. Use AdaptiveRepart or the
Repart* methods when you have a reasonably good load balance that you wish to update incrementally. These methods
are well suited for dynamic load balancing (for example, adaptive mesh refinement). A reasonable strategy is to call
PartKway once to obtain a good initial balance and later update this balance using AdaptiveRepart (Repart* in ParMetis
2.0).

Zoltan is currently compatible with ParMETIS versions 3.1 and 2.0. There is no guarantee that Zoltan will work correctly
if you have a different version of ParMETIS on your computer. (ParMETIS 3.0 will work with Zoltan in most cases, but is
not officially supported. ParMETIS 3.1 is highly recommended. The 2.0 version will soon become obsolete and may not
be supported in future Zoltan versions.) The ParMETIS source code can be obtained from the ParMETIS home page. As a
courtesy service, a recent, compatible version of the ParMETIS source code is distributed with Zoltan. However,
ParMETIS is a completely separate library. If you do not wish to install ParMETIS, it is possible to compile Zoltan
without any references to ParMETIS (when you 'make' Zoltan, comment out the PARMETIS_LIBPATH variable in the
configuration file Utilities/Config/Config.<platform>).

Note that Zoltan ignores the imbalance tolerance parameter IMBALANCE_TOL when ParMETIS 2.0 is used (the default
value 1.05 is used), while IMBALANCE_TOL works correctly with ParMETIS 3.0. Zoltan supports the multiconstraint
feature of ParMETIS 3 through multiple object weights (see OBJ_WEIGHT_DIM).

The graph given to Zoltan/ParMETIS must be symmetric. Any self edges (loops) will be ignored. Multiple edges between
a pair of vertices is not allowed. All weights must be non-negative. The graph does not have to be connected.

Method String: PARMETIS
Parameters:

Zoltan User's Guide: ParMETIS Interface

file:///F|/docs/Zoltan_html/ug_html/ug_alg_parmetis.html (1 of 2) [12/1/2003 12:12:00 PM]

http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www-users.cs.umn.edu/~karypis/metis/parmetis/

 PARMETIS_METHOD The ParMETIS method to be used; currently nine are available.
PartKway - multilevel Kernighan-Lin partitioning
PartGeom - space filling curves (coordinate based)
PartGeomKway - hybrid method based on PartKway and PartGeom (needs both
graph data and coordinates)
AdaptiveRepart - adaptive repartitioning (only in ParMETIS 3.0 and higher)
RepartLDiffusion - diffusion algorithm (local)
RepartGDiffusion - diffusion algorithm (global)
RepartRemap - multilevel partioning with remap seeking to minimize migration cost
RepartMLRemap - similar to RepartRemap but with additional multilevel
refinement
RefineKway - refine the current partitioning (balance)
The method names are case insensitive.

 PARMETIS_OUTPUT_LEVEL Amount of output the load-balancing algorithm should produce.
0 = no output, 1 = print timing info. Turning on more bits displays more information
(for example, 3=1+2, 5=1+4, 7=1+2+4).

 PARMETIS_COARSE_ALG Coarse algorithm for PartKway. 1 = serial, 2 = parallel. (ParMETIS 2 only)
 PARMETIS_SEED Random seed for ParMETIS.
 PARMETIS_ITR Ratio of interprocessor communication time to redistribution time. A high value will

emphasize reducing the edge cut, while a small value will try to keep the change in
the new partition (distribution) small. This parameter is only used by
AdaptiveRepart. A value of between 100 and 1000 is good for most problems.

 USE_OBJ_SIZE Use (or not use) the available information about object sizes to estimate migration
cost. This parameter is currently only relevant for AdaptiveRepart.

 CHECK_GRAPH Level of error checking for graph input: 0 = no checking, 1 = on-processor checking,
2 = full checking. (CHECK_GRAPH==2 is very slow and should be used only
during debugging).

 SCATTER_GRAPH Scatter graph data by distributing contiguous chunks of objects (vertices) of roughly
equal size to each processor before calling the partitioner. 0 = don't scatter; 1 =
scatter only if all objects are on a single processor; 2 = scatter if at least one
processor owns no objects (recommended to avoid a bug in ParMETIS 2.0); 3 =
always scatter.

Default values:
PARMETIS_METHOD = RepartGDiffusion
PARMETIS_OUTPUT_LEVEL = 0
PARMETIS_COARSE_ALG = 2
PARMETIS_SEED = 15
PARMETIS_ITR = 100
USE_OBJ_SIZE = 1
CHECK_GRAPH = 1
SCATTER_GRAPH = 1

Required Query Functions:
For all submethods: ZOLTAN_NUM_OBJ_FN

ZOLTAN_OBJ_LIST_FN or
ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN pair

Only PartGeom & PartGeomKway: ZOLTAN_NUM_GEOM_FN

ZOLTAN_GEOM_MULTI_FN or ZOLTAN_GEOM_FN

All but PartGeom: ZOLTAN_NUM_EDGES_MULTI_FN or ZOLTAN_NUM_EDGES_FN
ZOLTAN_EDGE_LIST_MULTI_FN or ZOLTAN_EDGE_LIST_FN

[Table of Contents | Next: Jostle | Previous: Refinement Tree Partitioning]

Zoltan User's Guide: ParMETIS Interface

file:///F|/docs/Zoltan_html/ug_html/ug_alg_parmetis.html (2 of 2) [12/1/2003 12:12:00 PM]

Zoltan User's Guide | Next | Previous

Jostle

Jostle is a library for graph (mesh) partitioning and load balancing developed at the University of Greenwich, London,
UK, by Chris Walshaw [Jostle, Walshaw]. The parallel version of Jostle is sometimes called pjostle. In the Zoltan context,
the name Jostle always refers to the parallel version of the library. The main algorithm used in Jostle is based on
multilevel graph partitioning, and a diffusion-type method is available for repartitioning. Hence the Jostle library is very
similar to ParMETIS. See the ParMETIS section for a brief description of graph partitioning as a model for load
balancing.

At present, only the most common Jostle options are supported by Zoltan. These are briefly described below. For further
details, see the documentation available from the Jostle home page. Other options may be added to Zoltan upon request.

Note that Jostle is not distributed with Zoltan. If you wish to use Jostle within Zoltan, you must first obtain a license for
Parallel Jostle and install it on your system. The license is currently free for academic use. Zoltan has been tested only
with parallel Jostle version 1.2.* and may be incompatible with other versions.

Method String: JOSTLE
Parameters:
 JOSTLE_OUTPUT_LEVEL Amount of output Jostle should produce. (integer)
 JOSTLE_THRESHOLD Threshold at which the graph contraction phase is stopped. (integer)
 JOSTLE_GATHER_THRESHOLD Duplicate coarse graph on all processors when there are fewer than this number of

nodes. (integer)
 JOSTLE_MATCHING Matching algorithm for graph contraction. (Valid values are "local" and "global".)
 JOSTLE_REDUCTION When reduction is turned off, Jostle performs a diffusion-type algorithm instead of

multilevel graph partitioning. (Valid values are "on" and "off".)
 JOSTLE_CONNECT Make a disconnected graph connected before partitioning. (Valid values are "on"

and "off".)
 CHECK_GRAPH Level of error checking for graph input: 0 = no checking, 1 = on-processor

checking, 2 = full checking. (CHECK_GRAPH==2 is very slow and should be
used only during debugging).

 SCATTER_GRAPH Scatter graph data by distributing contiguous chunks of objects (vertices) of
roughly equal size to each processor before calling the partitioner. 0 = don't scatter;
1 = scatter only if all objects are on a single processor; 2 = scatter if at least one
processor owns no objects; 3 = always scatter.

Default values: See the Jostle documentation. See our ParMETIS section for the last two
parameters.

Required Query Functions:
ZOLTAN_NUM_OBJ_FN

ZOLTAN_OBJ_LIST_FN or
ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN pair

ZOLTAN_NUM_EDGES_MULTI_FN or ZOLTAN_NUM_EDGES_FN
ZOLTAN_EDGE_LIST_MULTI_FN or ZOLTAN_EDGE_LIST_FN

[Table of Contents | Next: Octree Partitioning | Previous: ParMETIS]

Zoltan User's Guide: Jostle Interface

file:///F|/docs/Zoltan_html/ug_html/ug_alg_jostle.html [12/1/2003 12:12:00 PM]

http://www.gre.ac.uk/jostle/
http://www.gre.ac.uk/jostle/
http://www.gre.ac.uk/jostle/

Zoltan User's Guide | Next | Previous

Octree Partitioning (OCTPART)

The Octree Partitioning algorithm is based upon work in load balancing for parallel mesh generation at Rensselaer
Polytechnic Institute [Flaherty, Loy et al.]. It was implemented in Zoltan by Luis Gervasio, Department of Computer
Science, Rensselaer Polytechnic Institute, as his summer project in 1998 [Gervasio]. An octree is a spatial decomposition
of the computational domain in which the root of the tree, representing the entire domain, is recursively divided by two in
each coordinate direction (producing eight or four "child" octants in 3D or 2D, respectively) until each subregion holds at
most an application-specified number of objects. These subregions are represented by the leaves of the octree. The octree
data structure is widely used in mesh generation and adaptive mesh refinement [Baehmann et al., Shephard and Georges].
The octree resulting from such a spatial decomposition of the domain can be used to partition an application's work
[Edwards, Pilkington and Baden, Warren and Salmon]. To partition an octree, a traversal of the tree is used to define a
global ordering on the leaves of the octree. This global ordering is often referred to as a Space-Filling Curve (SFC). The
leaves of the octree can be easily assigned to processors in a manner which equally distributes work by assigning slices of
the ordered list to processors. Different tree-traversal algorithms produce different global orderings or SFCs, with some
SFCs having better connectivity and partition quality properties than others. Currently, Morton Indexing (i.e., Z-curve),
Grey Code, and Hilbert SFCs are supported. Morton Indexing and Grey Code SFCs are the simplest (and currently, the
fastest) of the SFC algorithms, but they produce lower-quality partitions than the Hilbert SFC.

Method String: OCTPART
Parameters:
 OCT_DIM Specifies whether the 2D or 3D Octree algorithms should be used. The 3D algorithms can

be used for 2D problems, but much memory will be wasted to allow for a non-existent
third dimension. Similarly, a 2D algorithm can be used for 3D surface meshes provided
that the surface can be projected to the xy-plane without overlapping points.
2 = use 2D algorithm; 3 = use 3D algorithm.

 OCT_METHOD The SFC to be used.
0 = Morton Indexing; 1 = Grey Code; 2 = Hilbert.

 OCT_MINOBJECTS The minimum number of objects to allow in a leaf octant of the octree. These objects will
be assigned as a group to a processor, so this parameter helps define the granularity of the
load-balancing problem. Values greater than or equal to one are allowable.

 OCT_MAXOBJECTS The maximum number of objects to allow in a leaf octant of the octree. These objects will
be assigned as a group to a processor, so this parameter helps define the granularity of the
load-balancing problem. Values greater than or equal to one are allowable.

 OCT_OUTPUT_LEVEL Amount of output the load-balancing algorithm should produce.
0 = no statistics; 1 = statistics summary; 2 = debugging information; 3 = data for
generating plots.

Default:
OCT_DIM = 3
OCT_METHOD = 2
OCT_MINOBJECTS = 10
OCT_MAXOBJECTS = 40
OCT_OUTPUT_LEVEL = 0

Required Query Functions:
ZOLTAN_NUM_OBJ_FN

ZOLTAN_OBJ_LIST_FN or ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN
pair
ZOLTAN_NUM_GEOM_FN

ZOLTAN_GEOM_MULTI_FN or ZOLTAN_GEOM_FN

Zoltan User's Guide: Octree Partitioning

file:///F|/docs/Zoltan_html/ug_html/ug_alg_oct.html (1 of 2) [12/1/2003 12:12:00 PM]

[Table of Contents | Next: Ordering | Previous: Jostle]

Zoltan User's Guide: Octree Partitioning

file:///F|/docs/Zoltan_html/ug_html/ug_alg_oct.html (2 of 2) [12/1/2003 12:12:00 PM]

Zoltan User's Guide | Next | Previous

Ordering Algorithms

NOTE: The ordering module in Zoltan has not yet been extensively tested and should be treated as an experimental
feature of the Zoltan version 1.5 release. The interface (API) may change in future versions.

The following ordering algorithms are currently included in the Zoltan library:

Nested dissection by METIS/ParMETIS (NODEND)

The parenthetical string is the parameter value for ORDER_METHOD parameter; the parameter is set through a call to
Zoltan_Set_Param.

Ordering Parameters

While the overall behavior of Zoltan is controlled by general Zoltan parameters, the behavior of each ordering method is
controlled by parameters specific to ordering which are also set by calls to Zoltan_Set_Param. Many of these parameters
are specific to individual ordering algorithms, and are listed in the descriptions of the individual algorithms. However,
several have meaning across multiple ordering algorithms. These parameters are described below.

Parameters:
 ORDER_METHOD The order algorithm used by Zoltan is specified by this parameter. Valid values are

"NODEND" (for nodal nested dissection by ParMETIS or METIS),
"METIS" (same as NODEND with ORDER_TYPE = local),
"PARMETIS" (same as NODEND with ORDER_TYPE = global), and
"NONE" (for no load-balancing).

 ORDER_TYPE "LOCAL" or "GLOBAL". If LOCAL is selected, then each processor constructs a local
(sub-)graph. All inter-processor edges are simply ignored. The ordering arrays returned, rank
and iperm, are local permutation vectors in this case.

ORDER_START_INDEX The start index for the permutation vectors rank and iperm. Valid values are 0 and 1.
 REORDER If this value is set to TRUE (non-zero), Zoltan assumes that the lists of local and global ids are

given as input to Zoltan_Order. Otherwise, the id lists will be populated by Zoltan_Order.
The permutation of the ids will be the one produced by calling the query functions.

Default Values:
ORDER_METHOD = NODEND
ORDER_TYPE = GLOBAL
ORDER_START_INDEX = 0
REORDER = FALSE

[Table of Contents | Next: Nested dissection by ParMETIS | Previous: Octtree Algorithm]

Zoltan User's Guide: Ordering Algorithms

file:///F|/docs/Zoltan_html/ug_html/ug_order.html [12/1/2003 12:12:01 PM]

Zoltan User's Guide | Next | Previous

Nested Dissection by METIS/ParMETIS

Nested Dissection (ND) is a popular method to compute fill-reducing orderings for sparse matrices. It can also be used for
other ordering purposes. The algorithm recursively finds a separator (bisector) in a graph, orders the nodes in the two
subsets first, and nodes in the separator last. In METIS/ParMETIS, the recursion is stopped when the graph is smaller than
a certain size, and some version of minimum degree ordering is applied to the remaining graph.

METIS computes a local ordering of the objects on each processor, while ParMETIS performs a global ordering of all the
objects. ParMETIS currently (versions 2.0 and 3.0) requires that the number of processors is a power of two.

The generic name for this method is NODEND. If GRAPH_TYPE=GLOBAL ParMETIS is called, but if it is LOCAL,
METIS is called. Alternatively, the user can simply set ORDER_METHOD to METIS or PARMETIS.

Order_Method String: NODEND or METIS or PARMETIS
Parameters:
 See ParMETIS. Note that the PARMETIS options are ignored when METIS is called.
Required Query
Functions:

ZOLTAN_NUM_OBJ_FN

ZOLTAN_OBJ_LIST_FN or ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN
pair
ZOLTAN_NUM_EDGES_MULTI_F N or ZOLTAN_NUM_EDGES_FN
ZOLTAN_EDGE_LIST_MULTI_F N or ZOLTAN_EDGE_LIST_FN

[Table of Contents | Next: Data Services and Utilities | Previous: Ordering Algorithms]

Zoltan User's Guide: Nested Dissection by ParMETIS

file:///F|/docs/Zoltan_html/ug_html/ug_order_parmetis.html [12/1/2003 12:12:01 PM]

Zoltan User's Guide | Next | Previous

Data Services and Utilities

Within Zoltan, several utilities are provided to simplify both application development and development of new algorithms
in the library. They are separate from the Zoltan library so that applications can use them independently of Zoltan, if
desired. They are compiled separately from Zoltan and can be archived in separate libraries. Instructions for building the
utilities and applications using them are included below; individual library names are listed in the following
documentation for each package.

The packages available are listed below.

Memory Management Utilities
Unstructured Communication Utilities
Distributed Directory Utility

Building Utilities

The utilities provided with Zoltan have their own Makefiles and can be built separately from Zoltan. If the user builds the
Zoltan library, the utility libraries are built automatically and copied to the appropriate Zoltan/Obj_<platform> directory,
where <platform> is specified through the ZOLTAN_ARCH environment variable. Zoltan and the utilities share the
Utilities/Config/Config.<platform> files specifying compilation paths for various architectures. If, however, a user
wishes to use these utilities without using Zoltan, he must build the libraries separately.

The structure and use of Makefiles for the utilities are similar to Zoltan's makefiles; a top-level makefile includes rules for
building each utility's library. Object files and the utility libraries are stored in a subdirectory Obj_<platform>, where
<platform> is a target architecture supported with a Utilities/Config/Config.<platform> file. The command for compiling
a particular utility follows:

gmake ZOLTAN_ARCH=<platform> <library_name>

where <library_name> is the name of the utility library, and <platform> is the target architecture (corresponding to
Utilities/Config/Config.<platform>). The <library_name> for each utility is included in the following documentation for
the utilities.

Building Applications

The utilities are designed so that they can easily be used separately from Zoltan in applications. To enable type-checking
of arguments, the function-prototypes file for a utility should be included in all application source code files that directly
access the utility. The application must also link with the appropriate utility library (and any other libraries on which the
utility depends). Library and function-prototype file names for each utility are listed in the following documentation for
the utilities.

[Table of Contents | Next: Memory Management Utilities | Previous: Nested Dissection by ParMETIS]

Zoltan User's Guide: Data Services

file:///F|/docs/Zoltan_html/ug_html/ug_util.html [12/1/2003 12:12:01 PM]

Zoltan User's Guide | Next | Previous

Memory Management Utilities

This package consists of wrappers around the standard C memory allocation and deallocation routines which add
error-checking and debugging capabilities. These routines are packaged separately from Zoltan to allow their independent
use in other applications. A Fortran90 interface is not yet available.

Source code location: Utilities/Memory
Function prototypes file: Utilities/Memory/zoltan_mem.h or include/zoltan_mem.h
Library name: libzoltan_mem.a
Other libraries used by this library: libmpi.a. (See note below.)

Routines:

Zoltan_Array_Alloc: Allocates arrays of dimension n, n=0,1,...,4
Zoltan_Malloc: Wrapper for system malloc.
Zoltan_Calloc: Wrapper for system calloc.
Zoltan_Realloc: Wrapper for system realloc.
Zoltan_Free: Frees memory and sets the pointer to NULL.
Zoltan_Memory_Debug: Sets the debug level used by the memory utilities; see the description below.
Zoltan_Memory_Stats: Prints memory debugging statistics, such as memory leak information.
Zoltan_Memory_Usage: Returns user-specified information about memory usage (i.e. maximum
memory used, total memory currently allocated).

Use in Zoltan:

The memory management utility routines are used extensively in Zoltan and in some individual
algorithms. Zoltan developers use these routines directly for most memory management, taking
advantage of the error checking and debugging capabilities of the library.

Rather than call Zoltan_Memory_Debug directly, applications using Zoltan can set the
DEBUG_MEMORY parameter used by this utility through calls to Zoltan_Set_Param.

Note on MPI usage:

MPI is used only to obtain the processor number (through a call to MPI_Comm_rank) for print
statements and error messages. If an application does not link with MPI, the memory utilities should be
compiled with -DZOLTAN_NO_MPI; all output will then appear to be from processor zero, even if it is
actually from other processors.

double *Zoltan_Array_Alloc(char * file, int line, int n, int d1, int d2, ..., int dn, int size);

The Zoltan_Array_Alloc routine dynamically allocates an array of dimension n, n = 0, 1, ..., 4 with size (d1 x d2 x ... x
dn). It is intended to be used for 2, 3 and 4 dimensional arrays; Zoltan_Malloc should be used for the simpler cases. The
memory allocated by Zoltan_Array_Alloc is contiguous, and can be freed by a single call to Zoltan_Free.

Arguments:
 file A string containing the name of the file calling the function. The __FILE__ macro can be passed

as this argument. This argument is useful for debugging memory allocation problems.
 line The line number within file of the call to the function. The __LINE__ macro can be passed as

this argument. This argument is useful for debugging memory allocation problems.
 n The number of dimensions in the array to be allocated. Valid values are 0, 1, 2, 3, or 4.
 d1, d2, ..., dn The size of each dimension to be allocated. One argument is included for each dimension.
 size The size (in bytes) of the data objects to be stored in the array.
Returned Value:

Zoltan User's Guide: Memory Management Utilities

file:///F|/docs/Zoltan_html/ug_html/ug_util_mem.html (1 of 5) [12/1/2003 12:12:02 PM]

 double * A pointer to the starting address of the n-dimensional array, or NULL if the allocation fails.
Example:

int ** x = (int **) Zoltan_Array_Alloc (__FILE__ , __LINE__ , 2, 5, 6, sizeof (int));
Allocates a two-dimensional, 5x6-element array of integers.

double *Zoltan_Malloc(int n, char * file , int line);

The Zoltan_Malloc function is a wrapper around the standard C malloc routine. It allocates a block of memory of size n
bytes. The principle advantage of using the wrapper is that it allows memory leaks to be tracked via the
DEBUG_MEMORY variable (set in Zoltan_Memory_Debug).

A macro ZOLTAN_MALLOC is defined in zoltan_mem.h. It takes the argument n, and adds the __FILE__ and
__LINE__ macros to the argument list of the Zoltan_Malloc call:

#define ZOLTAN_MALLOC(n) Zoltan_Malloc((n), __FILE__, __LINE__)

Using this macro, the developer gains the file and line debugging information without having to type file and line
information in each memory allocation call.

Arguments:
 n The size (in bytes) of the memory-allocation request.
 file A string containing the name of the file calling the function. The __FILE__ macro can be passed

as this argument. This argument is useful for debugging memory allocation problems.
 line The line number within file of the call to the function. The __LINE__ macro can be passed as

this argument. This argument is useful for debugging memory allocation problems.
Returned Value:
 double * A pointer to the starting address of memory allocated. NULL is returned if n = 0 or the routine

is unsuccessful.
Example:

struct Zoltan_Struct *b = (struct Zoltan_Struct *) ZOLTAN_MALLOC(sizeof(struct
Zoltan_Struct));
Allocates memory for one Zoltan_Struct data structure.

double *Zoltan_Calloc(int num, int size, char * file, int line);

The Zoltan_Calloc function is a wrapper around the standard C calloc routine. It allocates a block of memory of size num
* size bytes and initializes the memory to zeros. The principle advantage of using the wrapper is that it allows memory
leaks to be tracked via the DEBUG_MEMORY variable (set in Zoltan_Set_Memory_Debug).

A macro ZOLTAN_CALLOC is defined in zoltan_mem.h. It takes the arguments num and size, and adds the __FILE__
and __LINE__ macros to the argument list of the Zoltan_Calloc call:

#define ZOLTAN_CALLOC(num, size) Zoltan_Calloc((num), (size), __FILE__, __LINE__)

Using this macro, the developer gains the file and line debugging information without having to type file and line
information in each memory allocation call.

Arguments:
 num The number of elements of the following size to allocate.
 size The size of each element. Hence, the total allocation is num * size bytes.
 file A string containing the name of the file calling the function. The __FILE__ macro can be passed

as this argument. This argument is useful for debugging memory allocation problems.
 line The line number within file of the call to the function. The __LINE__ macro can be passed as

this argument. This argument is useful for debugging memory allocation problems.
Returned Value:

Zoltan User's Guide: Memory Management Utilities

file:///F|/docs/Zoltan_html/ug_html/ug_util_mem.html (2 of 5) [12/1/2003 12:12:02 PM]

 double * A pointer to the starting address of memory allocated. NULL is returned if n = 0 or the routine
is unsuccessful.

Example:
int *b = (int *) ZOLTAN_CALLOC(10, sizeof(int));
Allocates memory for 10 integers and initializes the memory to zeros.

double *Zoltan_Realloc(void *ptr, int n, char *file, int line);

The Zoltan_Realloc function is a "safe" version of realloc. It changes the size of the object pointed to by ptr to n bytes.
The contents of ptr are unchanged up to a minimum of the old and new sizes. Error tests ensuring that n is a positive
number and that space is available to be allocated are performed.

A macro ZOLTAN_REALLOC is defined in zoltan_mem.h. It takes the arguments ptr and n, and adds the __FILE__
and __LINE__ macros to the argument list of the Zoltan_Realloc call:

#define ZOLTAN_REALLOC(ptr, n) Zoltan_Realloc((ptr), (n), __FILE__, __LINE__)

Using this macro, the developer gains the file and line debugging information without having to type file and line
information in each memory allocation call.

Arguments:
 ptr Pointer to allocated memory to be re-sized.
 n The size (in bytes) of the memory-allocation request.
 file A string containing the name of the file calling the function. The __FILE__ macro can be passed

as this argument. This argument is useful for debugging memory allocation problems.
 line The line number within file of the call to the function. The __LINE__ macro can be passed as

this argument. This argument is useful for debugging memory allocation problems.
Returned Value:
 double * A pointer to the starting address of memory allocated. If the routine is unsuccessful, NULL is

returned and *ptr is unchanged.
Example:

int n = sizeof(struct Zoltan_Struct);
int *b = (int *) ZOLTAN_MALLOC (n));
b = (int *) ZOLTAN_REALLOC (b, 2*n);
Reallocates memory for b from length n to length 2*n.

void Zoltan_Free(void **ptr, char * file , int line);

The Zoltan_Free function calls the system's "free" function for the memory pointed to by *ptr. Note that the argument to
this routine has an extra level of indirection when compared to the standard C "free" call. This allows the pointer being
freed to be set to NULL, which can help find errors in which a pointer is used after it is deallocated. Error checking is
performed to prevent attempts to free NULL pointers. When Zoltan_Free is used with the DEBUG_MEMORY options
(set in Zoltan_Memory_Debug), it can help identify memory leaks.

A macro ZOLTAN_FREE is defined in zoltan_mem.h. It takes the argument ptr, and adds the __FILE__ and __LINE__
macros to the argument list of the Zoltan_Free call:

#define ZOLTAN_FREE(ptr) Zoltan_Free((void **)(ptr), __FILE__, __LINE__)

Using this macro, the developer gains the file and line debugging information without having to type file and line
information in each memory allocation call.

Arguments:
 ptr Address of a pointer to the memory to be freed. Upon return, ptr is set to NULL.
Example:

ZOLTAN_FREE(& x);

Zoltan User's Guide: Memory Management Utilities

file:///F|/docs/Zoltan_html/ug_html/ug_util_mem.html (3 of 5) [12/1/2003 12:12:02 PM]

Frees memory associated with the variable x; upon return, x is NULL.

Debugging Memory Errors

One important reason to use the memory-management utilities' wrappers around the system memory routines is to
facilitate debugging of memory problems. Various amounts of information can about memory allocation and deallocation
are stored, depending on the debug level set through a call to Zoltan_Memory_Debug. This information is printed either
when an error or warning occurs, or when Zoltan_Memory_Stats is called. We have found values of one and two to be
very helpful in our development efforts. The routine Zoltan_Memory_Usage can be called to return user-specified
information about memory utilization to the user's program.

void Zoltan_Memory_Debug(int new_level);

The Zoltan_Memory_Debug function sets the level of memory debugging to be used.

Arguments:
 new_level Integer indicating the amount of debugging to use. Valid options include:

0 -- No debugging.
1 -- The number of calls to Zoltan_Malloc and Zoltan_Free are tallied, and
can be printed by a call to Zoltan_Memory_Stats.
2 -- A list of all calls to Zoltan_Malloc which have not yet been freed is kept.
This list is printed by Zoltan_Memory_Stats (useful for detecting memory
leaks). Any calls to Zoltan_Free with addresses not in this list trigger warning
messages. (Note that allocations that occurred prior to setting the debug level to
2 will not be in this list and thus can generate spurious warnings.)
3 -- Information about each allocation is printed as it happens.

Default:
Memory debug level is 1.

void Zoltan_Memory_Stats();

The Zoltan_Memory_Stats function prints information about memory allocation and deallocation. The amount of
information printed is determined by the debug level set through a call to Zoltan_Memory_Debug.

Arguments:
None.

int Zoltan_Memory_Usage(int type);

The Zoltan_Memory_Usage function returns information about memory utilization. The memory debug level (set
through a call to Zoltan_Set_Memory_Debug) must be at least 2 for this function to return non-zero values.

Arguments:
 type Integer to request type of information required. These integers are defined in zoltan_mem.h.

Valid options include:

ZOLTAN_MEM_STAT_TOTAL -- The function will return the current total
memory allocated via Zoltan's memory allocation routines.
ZOLTAN_MEM_STAT_MAXIMUM -- The function will return the maximum
total memory allocated via Zoltan's memory allocation routines up to this point.

Zoltan User's Guide: Memory Management Utilities

file:///F|/docs/Zoltan_html/ug_html/ug_util_mem.html (4 of 5) [12/1/2003 12:12:02 PM]

Default:
type = ZOLTAN_MEM_STAT_MAXIMUM

Returned Value:

 int The number in bytes of the specific requested memory statistic.
Example:

total = Zoltan_Memory_Usage (ZOLTAN_MEM_STAT_TOTAL);

[Table of Contents | Next: Unstructured Communication Utilities | Previous: Utilities]

Zoltan User's Guide: Memory Management Utilities

file:///F|/docs/Zoltan_html/ug_html/ug_util_mem.html (5 of 5) [12/1/2003 12:12:02 PM]

 Zoltan User's Guide | Next | Previous

Unstructured Communication Utilities

The unstructured communication package provides a simple interface for doing complicated patterns of point-to-point
communication, such as those associated with data remapping. This package consists of a few simple functions which
create or modify communication plans, perform communication, and destroy communication plans upon completion. The
package is descended from software first developed by Steve Plimpton and Bruce Hendrickson, and has proved useful in a
variety of different applications. For this reason, it is maintained as a separate library and can be used independently from
Zoltan.

In a prototypical usage of the unstructured communication package each processor has some objects to send to other
processors, but no processor knows what messages it will receive. A call to Zoltan_Comm_Create produces a data
structure called a communication plan which encapasulates the basic information about the communication operation. The
plan does not know anything about the types of objects being transferred, only the number of them. So the same plan can
be used repeatedly to transfer different types of data as long as the number of objects in the transfers remains the same.
The actual size of objects isn't specified until the call to Zoltan_Comm_Do which performs the data transfer.

The plan which is produced by Zoltan_Comm_Create assumes that all the objects are of the same size. If this is not true,
then a call to Zoltan_Comm_Resize can specify the actual size of each object, and the plan is augmented appropriately.
Zoltan_Comm_Resize can be invoked repeatedly on the same plan to specify varying sizes for different data transfer
operations.

Although a friendlier interface may be added in the future, for now the data to be sent must be passed to
Zoltan_Comm_Do as a packed buffer in which the objects are stored consecutively. This probably requires the
application to pull the data out of native data structures and place in into the buffer. The destination of each object is
specified by the proclist argument to Zoltan_Comm_Create. Some flexibility is supported by allowing proclist to
contain negative values, indicating that the corresponding objects are not to be sent. The communication operations allow
for any object to be sent to any destination processor. However, if the objects are grouped in such a way that all those
being sent to a particular processor are consecutive, the time and memory of an additional copy is avoided.

All the functions in the unstructured communication library return integer error codes identical to those used by Zoltan. A
Fortran90 interface is not yet available.

Source code location: Utilities/Communication
Function prototypes file: Utilities/Communication/zoltan_comm.h or

include/zoltan_comm.h
Library name: libzoltan_comm.a
Other libraries used by this library: libmpi.a, libzoltan_mem.a.

Zoltan User's Guide: Communication Utilities

file:///F|/docs/Zoltan_html/ug_html/ug_util_comm.html (1 of 6) [12/1/2003 12:12:03 PM]

High Level Routines:

Zoltan_Comm_Create: computes a communication plan for sending objects to destination processors.
Zoltan_Comm_Do: uses a communication plan to send data objects to destination processors.
Zoltan_Comm_Do_Reverse: performs the reverse (opposite) communication of Zoltan_Comm_Do.
Zoltan_Comm_Resize: augments the plan to allow objects to be of variable sizes.
Zoltan_Comm_Destroy: free memory associated with a communication plan.

Low Level Routines:

Zoltan_Comm_Exchange_Sizes: updates the sizes of the messages each processor will receive.
Zoltan_Comm_Invert_Map: given a set of messages each processor wants to send, determines the set
of messages each processor needs to receive.
Zoltan_Comm_Sort_Ints: sorts an array of integer values.
Zoltan_Comm_Info: returns information about a communication plan.
Zoltan_Comm_Invert_Plan: given a communication plan, converts the plan into a plan for the reverse
communication.

Use in Zoltan:

The Zoltan library uses the unstructured communication package in its migration tools and in some of
the load-balancing algorithms. For example, in Zoltan_Migrate, Zoltan_Comm_Create is used to
develop a communication map for sending objects to be exported to their new destination processors.
The sizes of the exported objects are obtained and the communication map is augmented with a call to
Zoltan_Comm_Resize. The data for the objects is packed into a communication buffer and sent to the
other processors through a call to Zoltan_Comm_Do. After the received objects are unpacked, the
communication plan is no longer needed, and it is deallocated by a call to Zoltan_Comm_Destroy.
Zoltan developers use the package whenever possible, as improvements made to the package (for
example, support for heterogeneous architectures) automatically propagate to the algorithms.

int Zoltan_Comm_Create(struct Zoltan_Comm_Obj **plan, int nsend, int *proclist, MPI_Comm comm, int tag, int
*nreturn);

The Zoltan_Comm_Create function sets up the communication plan in the unstructured communication package. Its
input is a count of objects to be sent to other processors, a list of the processors to which the objects should be sent
(repetitions are allowed), and an MPI communicator and tag. It allocates and builds a communication plan that describes
to which processors data will be sent and from which processors data will be received. It also computes the amount of
data to be sent to and received from each processor. It returns the number of objects to be received by the processor and a
pointer to the communication plan it created. The communication plan is then used by calls to Zoltan_Comm_Do to
perform the actual communication.

Arguments:
 plan A pointer to the communication plan created by Zoltan_Comm_Create.
 nsend The number of objects to be sent to other processors.
 proclist An array of size nsend of destination processor numbers for each of the objects to be sent.
 comm The MPI communicator for the unstructured communication.
 tag A tag for MPI communication.
 nreturn Upon return, the number of objects to be received by the processor.
Returned Value:
 int Error code.

int Zoltan_Comm_Do(struct Zoltan_Comm_Obj *plan, int tag, char *send_data, int nbytes, char *recvbuf);

The Zoltan_Comm_Do function performs the communication described in a communication plan built by
Zoltan_Comm_Create. Using the plan, it takes a buffer of object data to be sent and the size (in bytes) of each object's
data in that buffer and sends the data to other processors. Zoltan_Comm_Do also receives object data from other

Zoltan User's Guide: Communication Utilities

file:///F|/docs/Zoltan_html/ug_html/ug_util_comm.html (2 of 6) [12/1/2003 12:12:03 PM]

processors and stores it in a receive buffer. The receive buffer must be allocated by the code calling Zoltan_Comm_Do
using the number of received objects returned by Zoltan_Comm_Create or Zoltan_Comm_Resize. If the objects have
variable sizes, then Zoltan_Comm_Resize must be called before Zoltan_Comm_Do.

Arguments:
 plan A pointer to a communication plan built by Zoltan_Comm_Create.

 tag An MPI message tag.
 send_data A buffer filled with object data to be sent to other processors.
 nbytes The size (in bytes) of the data for one object, or the scale factor if the objects have variable

sizes. (See Zoltan_Comm_Resize for more details.)

 recvbuf Upon return, a buffer filled with object data received from other processors.
Returned Value:
 int Error code.

int Zoltan_Comm_Do_Reverse(struct Zoltan_Comm_Obj *plan, int tag, char *send_data, int nbytes, int *sizes, char
*recvbuf);

The Zoltan_Comm_Do_Reverse function performs communication based on a communication plan built by
Zoltan_Comm_Create. But unlike Zoltan_Comm_Do, this routine performs the reverse of the communication pattern.
Specifically, all sends in the plan are treated as receives and vice versa. Zoltan_Comm_Do_Reverse is particularly well
suited to return updated data objects to their originating processors when the objects were initially transferred via
Zoltan_Comm_Do.

Arguments:
 plan A pointer to a communication plan built by Zoltan_Comm_Create.

 tag An MPI message tag to be used by this routine.
 send_data A buffer filled with object data to be sent to other processors.
 nbytes The size (in bytes) of the data associated with an object, or the scale factor if the objects have

variable sizes.
 sizes If not NULL, this input array specifies the size of all the data objects being transferred. This

argument is passed directly to Zoltan_Comm_Resize. This array has length equal to the nsend
value passed to Zoltan_Comm_Create. But note that for Zoltan_Comm_Do_Reverse this
array describes the sizes of the values being received, not sent.

 recvbuf Upon return, a buffer filled with object data received from other processors.
Returned Value:
 int Error code.

int Zoltan_Comm_Resize(struct Zoltan_Comm_Obj *plan, int *sizes, int tag , int *total_recv_size);

If the objects being communicated are of variable sizes, then the plan produced by Zoltan_Comm_Create is incomplete.
This routine allows the plan to be augmented to allow for variable sizes. Zoltan_Comm_Resize can be invoked
repeatedly on the same plan to specify different object sizes associated with different data transfers.

Arguments:
 plan A communication plan built by Zoltan_Comm_Create.

 sizes An input array of length equal to the nsend argument in the call to Zoltan_Comm_Create
which generated the plan. Each entry in the array is the size of the corresponding object to be
sent. If sizes is NULL (on all processors), the objects are considered to be the same size. Note
that the true size of a message will be scaled by the nbytes argument to Zoltan_Comm_Do.

 tag A message tag to be used for communication within this routine, based upon the communicator
in plan.

Zoltan User's Guide: Communication Utilities

file:///F|/docs/Zoltan_html/ug_html/ug_util_comm.html (3 of 6) [12/1/2003 12:12:03 PM]

 total_recv_size Sum of the sizes of the incoming messages. To get the actual size (in bytes), you need to scale
by the nbytes argument to Zoltan_Comm_Do.

Returned Value:
 int Error code.

int Zoltan_Comm_Destroy(struct Zoltan_Comm_Obj **plan);

The Zoltan_Comm_Destroy function frees all memory associated with a communication plan created by
Zoltan_Comm_Create.

Arguments:
 plan A pointer to a communication plan built by Zoltan_Comm_Create. Upon return, plan is set to

NULL.
Returned Value:
 int Error code.

int Zoltan_Comm_Exchange_Sizes(int *sizes_to, int *procs_to, int nsends, int self_msg, int *sizes_from, int
*procs_from, int nrecvs, int *total_recv_size, int my_proc, int tag, MPI_Comm comm);

This routine is used by Zoltan_Comm_Resize to update the sizes of the messages each processor is expecting to receive.
The processors already know who will send them messages, but if variable sized objects are being communicated, then
the sizes of the messages are recomputed and exchanged via this routine.

Arguments:
 sizes_to Input array with the size of each message to be sent. Note that the actual number of bytes in the

message is the product of this value and the nbytes argument to Zoltan_Comm_Do.

 procs_to Input array with the destination processor for each of the messages to be sent.
 nsends Input argument with the number of messages to be sent. (Length of the procs_to array.)
 self_msg Input argument indicating whether a processor has data for itself (=1) or not (=0) within the

procs_to and lengths_to arrays.
 sizes_from Returned array with the size of each message that will be received. Note that the actual number

of bytes in the message is the product of this value and the nbytes argument to
Zoltan_Comm_Do.

 procs_from Returned array of processors from which data will be received.
 nrecvs Returned value with number of messages to be received. (length of procs_from array.)
 total_recv_size The total size of all the messages to be received. As above, the actual number of bytes will be

scaled by the nbytes argument to Zoltan_Comm_Do.

 my_proc The processor's ID in the comm communicator.
 tag A message tag which can be used by this routine.
 comm MPI Communicator for the processor numbering in the procs arrays.
Returned Value:
 int Error code.

int Zoltan_Comm_Invert_Map(int *lengths_to, int * procs_to, int nsends, int self_msg, int ** lengths_from, int **
procs_from, int * nrecvs, int my_proc, int nprocs, int out_of_mem, int tag, MPI_Comm comm);

The Zoltan_Comm_Invert_Map function is a low level communication routine. It is useful when a processor knows to
whom it needs to send data, but not from whom it needs to receive data. Each processor provides to this routine a set of
lengths and destinations for the messages it wants to send. The routine then returns the set of lengths and origins for the
messages a processor will receive. Note that by inverting the interpretation of to and from in these arguments, the routine
can be used to do the opposite: knowing how much data to receive and from which processors, it can compute how much

Zoltan User's Guide: Communication Utilities

file:///F|/docs/Zoltan_html/ug_html/ug_util_comm.html (4 of 6) [12/1/2003 12:12:03 PM]

data to send and to which processors.

Arguments:
 lengths_to Input array with the number of values in each of the messages to be sent. Note that the actual

size of each value is not specified until the Zoltan_Comm_Do routine is invoked.

 procs_to Input array with the destination processor for each of the messages to be sent.
 nsends Input argument with the number of messages to be sent. (Length of the lengths_to and procs_to

arrays.)
 self_msg Input argument indicating whether a processor has data for itself (=1) or not (=0) within the

procs_to and lengths_to arrays.
 lengths_from Returned array with lengths of messages to be received.
 procs_from Returned array of processors from which data will be received.
 nrecvs Returned value with number of messages to be received (lengths of lengths_from and

procs_from arrays).
 my_proc The processor's ID in the comm communicator.
 nprocs Number of processors in the comm communicator.
 out_of_mem Since it has a barrier operation, this routine is a convenient time to tell all the processors that one

of them is out of memory. This input argument is 0 if the processor is OK, and 1 if the processor
has failed in a malloc call. All the processors will return with a code of COMM_MEMERR if
any of them is out of memory.

 tag A message tag which can be used by this routine.
 comm MPI Communicator for the processor numbering in the procs arrays.
Returned Value:
 int Error code.

int Zoltan_Comm_Sort_Ints(int *vals_sort, int *vals_other, int nvals);

As its name suggests, the Zoltan_Comm_Sort_Ints function sorts a set of integers via the quicksort algorithm. The
integers are reordered from lowest to highest, and a second array of integers is reordered in the same fashion. This second
array can be used to return the permutation associated with the sort operation.

Arguments:
 vals_sort The array of integers to be sorted. This array is permuted into sorted order.
 vals_other Another array of integers which is permuted identically to vals_sort.
 nvals The number of values in the two integer arrays.
Returned Value:
 int Error code.

int Zoltan_Comm_Info(struct Zoltan_Comm_Obj *plan, int *nsends, int *send_procs, int *send_lengths, int
*send_nvals, int *send_max_size, int *send_list, int *nrecvs, int *recv_procs, int *recv_lengths, int *recv_nvals, int
*recv_total_size, int *recv_list, int *self_msg)

Zoltan_Comm_Info returns information about a communication plan. All arguments, except the plan itself, may be
NULL; values are returned only for non-NULL arguments.

Arguments:
 plan Communication data structure created by Zoltan_Comm_Create.

 nsends Upon return, the number of processors to which messages are sent; does not include
self-messages.

 send_procs Upon return, a list of processors to which messages are sent; self-messages are included.
 send_lengths Upon return, the number of values to be sent to each processor in send_procs.
 send_nvals Upon return, the total number of values to send.

Zoltan User's Guide: Communication Utilities

file:///F|/docs/Zoltan_html/ug_html/ug_util_comm.html (5 of 6) [12/1/2003 12:12:03 PM]

 send_max_size Upon return, the maximum size of a message to be sent; does not include self-messages.
 send_list Upon return, the processor assignment of each value to be sent.
 nrecvs Upon return, the number of processors from which to receive messages; does not include

self-messages.
 recv_procs Upon return, a list of processors from which messages are received; includes self-messages.
 recv_lengths Upon return, the number of values to be received from each processor in recv_procs.
 recv_nvals Upon return, the total number of values to receive.
 recv_total_size Upon return, the total size of items to be received.
 recv_list Upon return, the processor assignments of each value to be received.
 self_msg Upon return, the number of self-messages.
Returned Value:
 int Error code.

int Zoltan_Comm_Invert_Plan(struct Zoltan_Comm_Obj **plan)

Given a communication plan, Zoltan_Comm_Invert_Plan alters the plan to make it the plan for the reverse
communication. Information in the input plan is replaced by information for the reverse-communication plan. All receives
in the reverse-communication plan are blocked; thus, using the inverted plan does not produce the same results as
Zoltan_Comm_Do_Reverse. If an error occurs within Zoltan_Comm_Invert_Plan, the original plan is returned
unaltered.

Arguments:
 plan Communication data structure created by Zoltan_Comm_Create; the contents of this plan are

irretrievably modified by Zoltan_Comm_Invert_Plan.
Returned Value:
 int Error code.

[Table of Contents | Next: Distributed Directory Utility | Previous: Memory Management Utilities]

Zoltan User's Guide: Communication Utilities

file:///F|/docs/Zoltan_html/ug_html/ug_util_comm.html (6 of 6) [12/1/2003 12:12:03 PM]

Zoltan Users's Guide | Next | Previous

Distributed Directory Utility

The owner (i.e. the processor number) of any computational object is subject to change during load balancing. An
application may use this directory utility to manage its objects' locations. A distributed directory balances the load (in
terms of memory and processing time) and avoids the bottle neck of a centralized directory design.

This distributed directory module may be used alone or in conjunction with Zoltan's load balancing capability and
memory and communication services. The user should note that external names (subroutines, etc.) which prefaced by
Zoltan_DD_ are reserved when using this module.

The user initially creates an empty distributed directory using Zoltan_DD_Create. Then global ID (GID) information is
added to the directory using Zoltan_DD_Update. The directory maintains the GID's basic information: local ID (optional),
partition (optional), arbitrary user data (optional), and the current data owner. Zoltan_DD_Update is also called after data
migration or refinements. Zoltan_DD_Find returns the directory information for a list of GIDs. A selected list of GIDs
may be removed from the directory by Zoltan_DD_Remove. When the user has finished using the directory, its memory
is returned to the system by Zoltan_DD_Destroy.

An object is known by its GID. Hashing provides very fast lookup for the information associated with a GID in a two step
process. The first hash of the GID yields the processor number owning the directory entry for that GID. The directory
entry owner remains constant even if the object (GID) migrates in time. Second, a different hash algorithm of the GID
looks up the associated information in directory processor's hash table. The user may optionally register their own (first)
hash function to take advantage of their knowledge of their GID naming scheme and the GID's neighboring processors.
See the documentation for Zoltan_DD_Set_Hash_Fn for more information. If no user hash function is registered, Zoltan's
Zoltan_Hash will be used. This module's design was strongly influenced by the paper "Communication Support for
Adaptive Computation" by Pinar and Hendrickson.

Some users number their GIDs by giving the first "n" GIDs to processor 0, the next "n" GIDs to processor 1, and so forth.
The function Zoltan_DD_Set_Neighbor_Hash_Fn1 will provide efficient directory communication when these GIDs stay
close to their origin. The function Zoltan_DD_Set_Neighbor_Hash_Fn2 allows the specification of ranges of GIDs to
each processor for more flexibility. The source code for DD_Set_Neighbor_Hash_Fn1 and DD_Set_Neighbor_Hash_Fn2
provide examples of how a user can create their own "hash" functions taking advantage of their own GID naming
convention.

The routine Zoltan_DD_Print will print the contents of the directory. The companion routine Zoltan_DD_Stats prints out
a summary of the hash table size, number of linked lists, and the length of the longest linked list. This may be useful when
the user creates their own hash functions.

A Fortran90 interface is not yet available.

Source code location: Utilities/DDirectory
Function prototypes file: Utilities/DDirectory/zoltan_dd.h or include/zoltan_dd.h
Library name: libzoltan_dd.a
Other libraries used by this library: libmpi.a, libzoltan_mem.a, libzoltan_comm.a

Zoltan User's Guide: Memory Management Utilities

file:///F|/docs/Zoltan_html/ug_html/ug_util_dd.html (1 of 5) [12/1/2003 12:12:05 PM]

file:///F|/docs/Zoltan_html/dev_html/dev_services_hash.html

Routines:

Zoltan_DD_Create: Allocates memory and initializes the directory.
Zoltan_DD_Destroy: Terminate the directory and frees its memory.
Zoltan_DD_Update: Adds or updates GIDs' directory information.
Zoltan_DD_Find: Returns GIDs' information (owner, local ID, etc.)
Zoltan_DD_Remove: Eliminates selected GIDs from the directory.
Zoltan_DD_Stats: Provides statistics about hash table & linked lists.
Zoltan_DD_Print: Displays the contents (GIDs, etc) of each directory.
Zoltan_DD_Set_Hash_Fn: Registers a user's optional hash function.
Zoltan_DD_Set_Neighbor_Hash_Fn1: Hash function with constant number of GIDs per processor.
Zoltan_DD_Set_Neighbor_Hash_Fn2: Hash function with variable number of GID's per processor.

Data Stuctures:

struct Zoltan_DD_Struct: State & storage used by all DD routines. Users should not modify any
internal values in this structure. Users should only pass the address of this structure to the other routines
in this package.

Use in Zoltan:

int Zoltan_DD_Create (struct Zoltan_DD_Struct **dd, MPI_Comm comm, int num_gid_entries, int num_lid_entries, int
user_length, int table_length, int debug_level);

Zoltan_DD_Create allocates and initializes memory for the Zoltan_DD_Struct structure. It must be called before any
other distributed directory routines. MPI must be initialized prior to calling this routine.

The Zoltan_DD_Struct must be passed to all other distributed directory routines. The MPI Comm argument designates the
processors used for the distributed directory. The MPI Comm argument is duplicated and stored for later use.

The user can set the debug level argument in the Zoltan_DD_Create to determine the module's response to multiple
updates for any GID within one update cycle. If the argument is set to 0, all multiple updates are ignored (but the last
determines the directory information.) If the argument is set to 1, an error is returned if the multiple updates represent
different owners for the same GID. If the debug level is 2, an error return and an error message are generated if multiple
updates represent different owners for the same GID. If the level is 3, an error return and an error message are generated
for a multiple update even if the updates represent the same owner for a GID.

Arguments:
 dd Structure maintains directory state and hash table.
 comm MPI comm duplicated and stored specifying directory processors.
 num_gid_entries Length of GID.
 num_lid_entries Length of local ID or zero to ignore local IDs.
 user_length Length of user defined data field (optional, may be zero).
 table_length Length of hash table (zero forces default value).
 debug_level Legal values range in [0,3]. Sets response to various error conditions where 3 is the most

verbose.
Returned Value:
 int Error code.

void Zoltan_DD_Destroy (struct Zoltan_DD_Struct **dd);

This routine frees all memory allocated for the distributed directory. No calls to any distributed directory functions using
this Zoltan_DD_Struct are permitted after calling this routine. MPI is necessary for this routine only to free the previously
saved MPI comm.

Arguments:

Zoltan User's Guide: Memory Management Utilities

file:///F|/docs/Zoltan_html/ug_html/ug_util_dd.html (2 of 5) [12/1/2003 12:12:05 PM]

 dd Directory structure to be deallocated.
Returned Value:
 void NONE

int Zoltan_DD_Update (struct Zoltan_DD_Struct *dd, ZOLTAN_ID_PTR gid, ZOLTAN_ID_PTR lid,
ZOLTAN_ID_PTR user, int *partition, int count);

Zoltan_DD_Update takes a list of GIDs and corresponding lists of optional local IDs, optional user data, and optional
partitions. This routine updates the information for existing directory entries or creates a new entry (filled with given data)
if a GID is not found. NULL lists should be passed for optional arguments not desired. This function should be called
initially and whenever objects are migrated to keep the distributed directory current.

The user can set the debug level argument in Zoltan_DD_Create to determine the module's response to multiple updates
for any GID within one update cycle.

Arguments:
 dd Distributed directory structure state information.
 gid List of GIDs to update (in).
 lid List of corresponding local IDs (optional) (in).
 user List of corresponding user data (optional) (in).
 partition List of corresponding partitions (optional) (in).
 count Number of GIDs in update list.
Returned Value:
 int Error code.

int Zoltan_DD_Find (Zoltan_DD_DDirectory *dd, ZOLTAN_ID_PTR gid, ZOLTAN_ID_PTR lid, ZOLTAN_ID_PTR
data, int *partition, int count, int *owner);

Given a list of GIDs, Zoltan_DD_Find returns corresponding lists of the GIDs' owners, local IDs, partitions, and optional
user data. NULL lists must be provided for optional information not being used.

Arguments:
 dd Distributed directory structure state information.
 gid List of GIDs whose information is requested.
 lid Corresponding list of local IDs (optional) (out).
 data Corresponding list of user data (optional) (out).
 partition Corresponding list of partitions (optional) (out).
 count Count of GIDs in above list.
 owner Corresponding list of data owners (out).
Returned Value:
 int Error code.

int Zoltan_DD_Remove (struct Zoltan_DD_Struct *dd, ZOLTAN_ID_PTR gid, int count);

Zoltan_DD_Remove takes a list of GIDs and removes all of their information from the distributed directory.

Arguments:
 dd Distributed directory structure state information.
 gid List of GIDs to eliminate from the directory.
 count Number of GIDs to be removed.

Zoltan User's Guide: Memory Management Utilities

file:///F|/docs/Zoltan_html/ug_html/ug_util_dd.html (3 of 5) [12/1/2003 12:12:05 PM]

Returned Value:
 int Error code.

void Zoltan_DD_Set_Hash_Fn (struct Zoltan_DD_Struct *dd, unsigned int (*hash) (ZOLTAN_ID_PTR, int, unsigned
int));

Enables the user to register a new hash function for the distributed directory. (If this routine is not called, the default hash
function Zoltan_Hash will be used automatically.) This hash function determines which processor maintains the
distributed directory entry for a given GID. Inexperienced users do not need this routine.

Experienced users may elect to create their own hash function based on their knowledge of their GID naming scheme. The
user's hash function must have calling arguments compatible with Zoltan_Hash. Consider that a user has defined a hash
function, myhash, as

 unsigned int myhash(ZOLTAN_ID_PTR gid, int length, unsigned int naverage)
 {
 return *gid / naverage ; /* GID length assumed to be 1 ; naverage = total_GIDS/nproc */
 }

Then the call to register this hash function is:
 Zoltan_DD_Set_Hash (myhash) ;

NOTE: This hash function might group the gid's directory information near the gid's owning processor's neighborhood,
for an appropriate naming scheme.

Arguments:
 dd Distributed directory structure state information.
 hash Name of user's hash function.
Returned Value:
 void NONE

void Zoltan_DD_Stats (struct Zoltan_DD_Struct *dd);

This routine prints out summary information about the local distributed directory. It includes the hash table length,
number of GIDs stored in the local directory, the number of linked lists, and the length of the longest linked list. The
debug level (set by an argument to Zoltan_DD_Create controls this routine's verbosity.

Arguments:
 dd Distributed directory structure for state information
Returned Value:
 void NONE

int Zoltan_DD_Set_Neighbor_Hash_Fn1 (struct Zoltan_DD_Struct *dd, int size);

This routine associates the first size GIDs to proc 0, the next size to proc 1, etc. It assumes the GIDs are consecutive
numbers. It assumes that GIDs primarily stay near their original owner. The GID length is assumed to be 1. GIDs outside
of the range are evenly distributed among the processors via modulo(number of processors). This is a model for the user
to develop their own similar routine.

Arguments:
 dd Distributed directory structure state information.
 size Number of consecutive GIDs associated with a processor.
Returned Value:

Zoltan User's Guide: Memory Management Utilities

file:///F|/docs/Zoltan_html/ug_html/ug_util_dd.html (4 of 5) [12/1/2003 12:12:05 PM]

file:///F|/docs/Zoltan_html/dev_html/dev_services_hash.html
file:///F|/docs/Zoltan_html/dev_html/dev_services_hash.html

 int Error code.

int Zoltan_DD_Set_Neighbor_Hash_Fn2 (struct Zoltan_DD_Struct *dd, int *proc, int *low, int *high, int n);

This routine allows the user to specify a beginning and ending GID "numbers" per directory processor. It assumes that
GIDs primarily stay near their original owner. It requires that the numbers of high, low, & proc entries are all n. It
assumes the GID length is 1. It is a model for the user to develop their own similar routine. Users should note the
registration of a cleanup routine to free local static memory when the distributed directory is destroyed. GIDs outside the
range specified by high and low lists are evenly distributed among the processors via modulo (number of processors).

Arguments:
 dd Distributed directory structure state information.
 proc List of processor ids labeling for corresponding high, low value.
 low List of low GID limits corresponding to proc list.
 high List of high GID limits corresponding to proc list.
 n Number of elements in the above lists. Should be number of processors!
Returned Value:
 int Error code.

int Zoltan_DD_Print (struct Zoltan_DD_Struct *dd);

This utility displays (to stdout) the entire contents of the distributed directory at one line per GID.

Arguments:
 dd Distributed directory structure state information.
Returned Value:
 int Error code.

User's Notes

Because Zoltan places no restrictions on the content or length of GIDs, hashing does not guarantee a balanced distribution
of objects in the distributed directory. Note also, the worst case behavior of a hash table lookup is very bad (essentially
becoming a linear search). Fortunately, the average behavior is very good! The user may specify their own hash function
via Zoltan_DD_Set_Hash_Fn to improve performance.

This software module is built on top of the Zoltan Communications functions for efficiency. Improvements to the
communications library will automatically benefit the distributed directory.

FUTURE:

The C99 capability for variable length arrays would significantly simplify many of these following
routines. (It eliminates the malloc/free calls for temporary storage. This helps prevent memory leaks.)
Other C99 features may also improve code readability. The "inline" capability can potentially improve
performance.

The distributed directory should be implemented via threads. However, MPI is not fully thread aware, yet.

[Table of Contents | Next: Examples of Zoltan Usage | Previous: Unstructured Communication Utilities]

Zoltan User's Guide: Memory Management Utilities

file:///F|/docs/Zoltan_html/ug_html/ug_util_dd.html (5 of 5) [12/1/2003 12:12:05 PM]

Zoltan User's Guide | Next | Previous

Examples of Zoltan Usage

Examples for each part of the Zoltan library are provided:

General use of Zoltan
Load-balancing calling sequence
Data migration calling sequences
Query functions for a simple application

[Table of Contents | Next: General Usage Example | Previous: Distributed Data Directories]

Zoltan User's Guide: Examples

file:///F|/docs/Zoltan_html/ug_html/ug_examples.html [12/1/2003 12:12:05 PM]

Zoltan User's Guide | Next | Previous

General Usage Example

An example of general Zoltan usage is included below. In this example, Zoltan_Initialize is called using the argc and
argv arguments to the main program. Then a pointer to a Zoltan structure is returned by the call to Zoltan_Create. In this
example, all processors will be used by Zoltan, as MPI_COMM_WORLD is passed to Zoltan_Create as the
communicator.

Several application query functions are then registered with Zoltan through calls to Zoltan_Set_Fn. Parameters are set
through calls to Zoltan_Set_Param. The application then performs in computations, including making calls to Zoltan
functions and utilities.

Before its execution ends, the application frees memory used by Zoltan by calling Zoltan_Destroy.

/* Initialize the Zoltan library */
struct Zoltan_Struct *zz;
float version;
...
Zoltan_Initialize(argc, argv, &version);
zz = Zoltan_Create(MPI_COMM_WORLD);

/* Register query functions. */
Zoltan_Set_Fn(zz, ZOLTAN_NUM_GEOM_FN_TYPE,
 (void (*)()) user_return_dimension, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_GEOM_FN_TYPE,
 (void (*)()) user_return_coords, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_NUM_OBJ_FN_TYPE,
 (void (*)()) user_return_num_node, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_OBJ_LIST_FN_TYPE,
 (void (*)()) user_return_owned_nodes, NULL);

/* Set some Zoltan parameters. */
Zoltan_Set_Param(zz, "debug_level", "4");

/* Perform application computations, call Zoltan, etc. */
...

/* Free Zoltan data structure before ending application. */
Zoltan_Destroy (&zz);

Typical calling sequence for general usage of the Zoltan library.

Zoltan User's Guide: General Usage Examples

file:///F|/docs/Zoltan_html/ug_html/ug_examples_init.html (1 of 2) [12/1/2003 12:12:05 PM]

! Initialize the Zoltan library
type(Zoltan_Struct), pointer :: zz
real(Zoltan_FLOAT) version
integer(Zoltan_INT) ierr
...
ierr = Zoltan_Initialize(version) ! without argc and argv
zz => Zoltan_Create(MPI_COMM_WORLD)

! Register load-balancing query functions.
! omit data = C NULL
ierr = Zoltan_Set_Fn(zz, ZOLTAN_NUM_GEOM_FN_TYPE, user_return_dimension)
ierr = Zoltan_Set_Fn(zz, ZOLTAN_GEOM_FN_TYPE, user_return_coords)
ierr = Zoltan_Set_Fn(zz, ZOLTAN_NUM_OBJ_FN_TYPE, user_return_num_node)
ierr = Zoltan_Set_Fn(zz, ZOLTAN_OBJ_LIST_FN_TYPE,
user_return_owned_nodes)

! Set some Zoltan parameters.
ierr = Zoltan_Set_Param(zz, "debug_level", "4")

! Perform application computations, call Zoltan, etc.
...

! Free Zoltan data structure before ending application.
call Zoltan_Destroy(zz)

Fortran version of general usage example.

[Table of Contents | Next: Load-Balancing Example | Previous: Examples of Library Usage]

Zoltan User's Guide: General Usage Examples

file:///F|/docs/Zoltan_html/ug_html/ug_examples_init.html (2 of 2) [12/1/2003 12:12:05 PM]

Zoltan User's Guide | Next | Previous

Load-Balancing Example

An example of the typical calling sequence for load balancing using Zoltan in a finite element application is shown in the
figure below. An application first selects a load-balancing algorithm by setting the LB_METHOD parameter with
Zoltan_Set_Param. Next, other parameter values are set by calls to Zoltan_Set_Param. After some computation, load
balancing is invoked by calling Zoltan_LB_Partition. The results of the load balancing include the number of nodes to
be imported and exported to the processor, lists of global and local IDs of the imported and exported nodes, and source
and destination processors of the imported and exported nodes. A returned argument of Zoltan_LB_Partition is tested to
see whether the new decomposition differs from the old one. If the decompositions differ, some sort of data migration is
needed to establish the new decomposition; the details of migration are not shown in this figure but will be addressed in
the migration examples. After the data migration is completed, the arrays of information about imported and exported
nodes returned by Zoltan_LB_Partition are freed by a call to Zoltan_LB_Free_Part.

char *lb_method;
int new, num_imp, num_exp, *imp_procs, *exp_procs;
int *imp_to_part, *exp_to_part;
int num_gid_entries, num_lid_entries;
ZOLTAN_ID_PTR imp_global_ids, exp_global_ids;
ZOLTAN_ID_PTR imp_local_ids, exp_local_ids;

/* Set load-balancing method. */
read_load_balancing_info_from_input_file(&lb_method);
Zoltan_Set_Param(zz, "LB_METHOD", lb_method);

/* Reset some load-balancing parameters. */
Zoltan_Set_Param(zz, "RCB_Reuse", "TRUE");

/* Perform computations */
...
/* Perform load balancing */
Zoltan_LB_Partition(zz,&new,&num_gid_entries,&num_lid_entries,
 &num_imp,&imp_global_ids,&imp_local_ids,&imp_procs,&imp_to_part,
 &num_exp,&exp_global_ids,&exp_local_ids,&exp_procs,&exp_to_part);
if (new)
 perform_data_migration(...);

/* Free memory allocated for load-balancing results by Zoltan library */
Zoltan_LB_Free_Part(&imp_global_ids, &imp_local_ids, &imp_procs,
&imp_to_part);
Zoltan_LB_Free_Part(&exp_global_ids, &exp_local_ids, &exp_procs,
&exp_to_part);
...

Typical calling sequence for performing load balancing with the Zoltan library.

Zoltan User's Guide: Load-Balancing Examples

file:///F|/docs/Zoltan_html/ug_html/ug_examples_lb.html (1 of 2) [12/1/2003 12:12:06 PM]

character(len=3) lb_method
logical new
integer(Zoltan_INT) num_imp, num_exp
integer(Zoltan_INT) num_gid_entries, num_lid_entries
integer(Zoltan_INT), pointer :: imp_procs(:), exp_procs(:)
integer(Zoltan_INT), pointer :: imp_global_ids(:), exp_global_ids(:) !
global IDs
integer(Zoltan_INT), pointer :: imp_local_ids(:), exp_local_ids(:) !
local IDs
integer(Zoltan_INT) ierr

! Set load-balancing method.
lb_method = "RCB"
ierr = Zoltan_Set_Param(zz, "LB_METHOD", lb_method)

! Reset some load-balancing parameters
ierr = Zoltan_Set_Param(zz, "RCB_Reuse", "TRUE")

! Perform computations
...
! Perform load balancing
ierr = Zoltan_LB_Partition(zz,new,num_gid_entries,num_lid_entries, &
 num_imp,imp_global_ids,imp_local_ids, &
 imp_procs,imp_to_part, &
 num_exp,exp_global_ids,exp_local_ids, &
 exp_procs,exp_to_part)
if (new) then
 perform_data_migration(...)
endif

! Free memory allocated for load-balancing results by Zoltan library
ierr = Zoltan_LB_Free_Part(imp_global_ids, imp_local_ids, imp_procs,
imp_to_part);
ierr = Zoltan_LB_Free_Part(exp_global_ids, exp_local_ids, exp_procs,
exp_to_part);
...

Fortran version of the load-balancing example.

[Table of Contents | Next: Migration Examples | Previous: General Usage Example]

Zoltan User's Guide: Load-Balancing Examples

file:///F|/docs/Zoltan_html/ug_html/ug_examples_lb.html (2 of 2) [12/1/2003 12:12:06 PM]

Zoltan User's Guide | Next | Previous

Migration Examples

Data migration using Zoltan's migration tools can be accomplished in two different ways:

auto-migration, or
user-guided migration.

The choice of migration method depends upon the complexity of the application's data. For some applications, only the
objects used in balancing must be migrated; no auxiliary data structures must be moved. Particle simulations are examples
of such applications; load balancing is based on the number of particles per processor, and only the particles and their data
must be moved to establish the new decomposition. For such applications, Zoltan's auto-migration tools can be used.
Other applications, such as finite element methods, perform load balancing on, say, the nodes of the finite element mesh,
but nodes that are moved to new processors also need to have their connected elements moved to the new processors, and
migrated elements may also need "ghost" nodes (i.e., copies of nodes assigned to other processors) to satisfy their
connectivity requirements on the new processor. This complex data migration requires a more user-controlled approach to
data migration than the auto-migration capabilities Zoltan can provide.

Auto-Migration Example

In the figure below, an example of the load-balancing calling sequence for a particle simulation using Zoltan's
auto-migration tools is shown. The application requests auto-migration by turning on the AUTO_MIGRATE option
through a call to Zoltan_Set_Param and registers functions to pack and unpack a particle's data. During the call to
Zoltan_LB_Partition, Zoltan computes the new decomposition and, using calls to the packing and unpacking query
functions, automatically migrates particles to their new processors. The application then frees the arrays returned by
Zoltan_LB_Partition and can continue computation without having to perform any additional operations for data
migration.

/* Tell Zoltan to automatically migrate data for the application. */
Zoltan_Set_Param(zz, "AUTO_MIGRATE", "TRUE");

/* Register additional functions for packing and unpacking data */
/* by migration tools. */
Zoltan_Set_Fn(zz, ZOLTAN_OBJ_SIZE_FN_TYPE,
 (void (*)()) user_return_particle_data_size, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_PACK_OBJ_FN_TYPE,
 (void (*)()) user_pack_particle_data, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_UNPACK_OBJ_FN_TYPE,
 (void (*)()) user_unpack_particle_data, NULL);
...
/* Perform computations */
...
/* Perform load balancing AND automatic data migration! */
Zoltan_LB_Partition(zz,&new,&num_gid_entries,&num_lid_entries,
 &num_imp,&imp_global_ids,&imp_local_ids,&imp_procs,&imp_to_part,
 &num_exp,&exp_global_ids,&exp_local_ids,&exp_procs,&exp_to_part);

/* Free memory allocated for load-balancing results by Zoltan */
Zoltan_LB_Free_Part(&imp_global_ids, &imp_local_ids, &imp_procs,
&imp_to_part);
Zoltan_LB_Free_Part(&exp_global_ids, &exp_local_ids, &exp_procs,
&exp_to_part);

Zoltan User's Guide: Migration Examples

file:///F|/docs/Zoltan_html/ug_html/ug_examples_mig.html (1 of 3) [12/1/2003 12:12:06 PM]

...

Typical calling sequence for using the migration tools' auto-migration capability with the dynamic
load-balancing tools.

User-Guided Migration Example

In the following figure, an example of user-guided migration using Zoltan's migration tools for a finite element
application is shown. Several migration steps are needed to completely rebuild the application's data structures for the new
decomposition. On each processor, newly imported nodes need copies of elements containing those nodes. Newly
imported elements, then, need copies of "ghost" nodes, nodes that are in the element but are assigned to other processors.
Each of these entities (nodes, elements, and ghost nodes) can be migrated in separate migration steps using the functions
provided in the migration tools. First, the assignment of nodes to processors returned by Zoltan_LB_Partition is
established. Query functions that pack and unpack nodes are registered and Zoltan_Migrate is called using the nodal
decomposition returned from Zoltan_LB_Partition. Zoltan_Migrate packs the nodes to be exported, sends them to other
processors, and unpacks nodes received by a processor. The packing routine migrate_node_pack includes with each node
a list of the element IDs for elements containing that node. The unpacking routine migrate_node_unpack examines the list
of element IDs and builds a list of requests for elements the processor needs but does not already store. At the end of the
nodal migration, each processor has a list of element IDs for elements that it needs to support imported nodes but does not
already store. Through a call to Zoltan_Invert_Lists, each processor computes the list of elements it has to send to other
processors to satisfy their element requests. Packing and unpacking routines for elements are registered, and
Zoltan_Migrate is again used to move element data to new processors. Requests for ghost nodes can be built within the
element packing and unpacking routines, and calls to Zoltan_Invert_Lists and Zoltan_Migrate, with node packing and
unpacking, satisfy requests for ghost nodes. In all three phases of migration, the migration tools handle communication;
the application is responsible only for packing and unpacking data and for building the appropriate request lists.

/* Assume Zoltan returns a decomposition of the */
/* nodes of a finite element mesh. */
Zoltan_LB_Partition(zz,&new,&num_gid_entries,&num_lid_entries,
 &num_imp,&imp_global_ids,&imp_local_ids,&imp_procs,&imp_to_part,
 &num_exp,&exp_global_ids,&exp_local_ids,&exp_procs,&exp_to_part);

/* Migrate the nodes as directed by the results of Zoltan_LB_Partition. */
/* While unpacking nodes, build list of requests for elements needed */
/* to support the imported nodes.*/
Zoltan_Set_Fn(zz, ZOLTAN_OBJ_SIZE_FN_TYPE,
 (void (*)()) migrate_node_size, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_PACK_OBJ_FN_TYPE,
 (void (*)()) migrate_pack_node, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_UNPACK_OBJ_FN_TYPE,
 (void (*)()) migrate_unpack_node, NULL);
Zoltan_Migrate(zz,num_import,imp_global_ids,imp_local_ids,imp_procs,imp_to_part,
 num_export,exp_global_ids,exp_local_ids,exp_procs,exp_to_part);

/* Prepare for migration of requested elements. */
Zoltan_Set_Fn(zz, ZOLTAN_PACK_OBJ_FN_TYPE,
 (void (*)()) migrate_pack_element, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_UNPACK_OBJ_FN_TYPE,
 (void (*)()) migrate_unpack_element, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_OBJ_SIZE_FN_TYPE,
 (void (*)()) migrate_element_size, NULL);

/* From the request lists, a processor knows which elements it needs */

Zoltan User's Guide: Migration Examples

file:///F|/docs/Zoltan_html/ug_html/ug_examples_mig.html (2 of 3) [12/1/2003 12:12:06 PM]

/* to support the imported nodes; it must compute which elements to */
/* send to other processors. */
Zoltan_Invert_Lists(zz, Num_Elt_Requests, Elt_Requests_Global_IDs,
 Elt_Requests_Local_IDs, Elt_Requests_Procs, Elt_Requests_to_Part,
 &num_tmp_exp, &tmp_exp_global_ids,
 &tmp_exp_local_ids, &tmp_exp_procs, &tmp_exp_to_part);

/* Processor now knows which elements to send to other processors. */
/* Send the requested elements. While unpacking elements, build */
/* request lists for "ghost" nodes needed by the imported elements. */
Zoltan_Migrate(zz, Num_Elt_Requests, Elt_Requests_Global_IDs,
 Elt_Requests_Local_IDs, Elt_Requests_Procs, Elt_Request_to_Part,
 num_tmp_exp_objs, tmp_exp_global_ids,
 tmp_exp_local_ids, tmp_exp_procs, tmp_exp_to_part);

/* Repeat process for "ghost" nodes. */
...

Typical calling sequence for user-guided use of the migration tools in Zoltan.

[Table of Contents | Next: Query-Function Examples | Previous: Load-Balancing Example]

Zoltan User's Guide: Migration Examples

file:///F|/docs/Zoltan_html/ug_html/ug_examples_mig.html (3 of 3) [12/1/2003 12:12:06 PM]

Zoltan User's Guide | Next | Previous

Query-Function Examples

Examples of query functions provided by a simple application are included below. The general-interface examples
include a simple implementation of ZOLTAN_GEOM_FN and ZOLTAN_OBJ_LIST_FN query functions and variants
of the simple implementation that exploit local identifiers and data pointers. Migration examples for packing and
unpacking objects are also included. Robust error checking is not included in the routines; application developers should
include more explicit error checking in their query functions.

General Interface Examples

Basic example
User-defined data pointer

Migration Examples

Packing and unpacking functions

All the examples use a mesh data structure consisting of nodes in the mesh. these nodes are the objects passed to Zoltan.
A node is described by its 3D coordinates and a global ID number that is unique across all processors. The type
definitions for the mesh and node data structures used in the examples are included below.

/* Node data structure. */
/* A node consists of its 3D coordinates and */
/* an ID number that is unique across all processors. */
struct Node_Type {
 double Coordinates[3];
 int Global_ID_Num;
};

/* Mesh data structure. */
/* Mesh consists of an array of nodes and */
/* the number of nodes owned by the processor. */
struct Mesh_Type {
 struct Node_Type Nodes[MAX_NODES];
 int Number_Owned;
};

Data types for the query-function examples.

Zoltan User's Guide: Query-Functon Examples

file:///F|/docs/Zoltan_html/ug_html/ug_examples_query.html (1 of 9) [12/1/2003 12:12:07 PM]

! Node data structure.
! A node consists of its 3D coordinates and
! an ID number that is unique across all processors.
type Node_Type
 real(Zoltan_DOUBLE) :: Coordinates(3)
 integer(Zoltan_INT) :: Global_ID_Num
end type Node_Type

! Mesh data structure.
! Mesh consists of an array of nodes and
! the number of nodes owned by the processor.
type Mesh_Type
 type(Node_Type) :: Nodes(MAX_NODES)
 integer(Zoltan_INT) :: Number_Owned
end type Mesh_Type

Data types for the Fortran query-function examples.

General Interface Query Function Examples

In the following examples, ZOLTAN_OBJ_LIST_FN and ZOLTAN_GEOM_FN query functions are implemented for
an application using the mesh and node data structures described above. The nodes are the objects passed to Zoltan.

Through a call to Zoltan_Set_Fn, the function user_return_owned_nodes is registered as the ZOLTAN_OBJ_LIST_FN
query function. It returns global and local identifiers for each node owned by a processor.

The function user_return_coords is registered as an ZOLTAN_GEOM_FN query function. Given the global and local
identifiers for a node, this function returns the node's coordinates. All the examples exploit the local identifier to quickly
locate nodal data. If such an identifier is not available in an application, a search using the global identifier can be
performed.

The Basic Example includes the simplest implementation of the query routines. In the query routines, it uses global
application data structures and a local numbering scheme for the local identifiers. The User-Defined Data Pointer
Example uses only local application data structures; this model is useful if the application does not have global data
structures or if objects from more than one data structure are to be passed to Zoltan. Differences between the latter
example and the Basic Example are shown in red.

Basic Example

In the simplest example, the query functions access the application data through a global data structure (Mesh)
representing the mesh. In the calls to Zoltan_Set_Fn, no pointers to application data are registered with the query
function (i.e., the data pointer is not used). A node's local identifier is an integer representing the index in the
Mesh.Nodes array of the node. The local identifier is set to the index's value in user_return_owned_nodes. It is used to
access the global Mesh.Nodes array in user_return_coords.

Zoltan User's Guide: Query-Functon Examples

file:///F|/docs/Zoltan_html/ug_html/ug_examples_query.html (2 of 9) [12/1/2003 12:12:07 PM]

/* in application's program file */
#include "zoltan.h"

/* Declare a global Mesh data structure. */
struct Mesh_Type Mesh;

main()
{
...
 /* Indicate that local and global IDs are one integer each. */
 Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1");
 Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", "1");

 /* Register query functions. */
 /* Do not register a data pointer with the functions; */
 /* the global Mesh data structure will be used. */
 Zoltan_Set_Fn(zz, ZOLTAN_GEOM_FN_TYPE,
 (void (*)()) user_return_coords, NULL);
 Zoltan_Set_Fn(zz, ZOLTAN_OBJ_LIST_FN_TYPE,
 (void (*)()) user_return_owned_nodes, NULL);
...
}

void user_return_owned_nodes(void *data,
 int num_gid_entries, int num_lid_entries,
 ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids,
 int wgt_dim, float *obj_wgts,
 int *ierr)
{
int i;
 /* return global node numbers as global_ids. */
 /* return index into Nodes array for local_ids. */
 for (i = 0; i < Mesh.Number_Owned; i++){
 global_ids[i*num_gid_entries] = Mesh.Nodes[i].Global_ID_Num;
 local_ids[i*num_lid_entries] = i;
 }
 *ierr = ZOLTAN_OK;
}

void user_return_coords(void *data,
 int num_gid_entries, int num_lid_entries,
 ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
 double *geom_vec, int *ierr)
{
 /* use local_id to index into the Nodes array. */
 geom_vec[0] = Mesh.Nodes[local_id[0]].Coordinates[0];
 geom_vec[1] = Mesh.Nodes[local_id[0]].Coordinates[1];
 geom_vec[2] = Mesh.Nodes[local_id[0]].Coordinates[2];
 *ierr = ZOLTAN_OK;
}

Example of general interface query functions (simplest implementation).

Zoltan User's Guide: Query-Functon Examples

file:///F|/docs/Zoltan_html/ug_html/ug_examples_query.html (3 of 9) [12/1/2003 12:12:07 PM]

! in application's program file

module Global_Mesh_Data
! Declare a global Mesh data structure.
 type(Mesh_Type) :: Mesh
end module

program query_example_1
use zoltan
...
 ! Indicate that local and global IDs are one integer each.
 ierr = Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1");
 ierr = Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", "1");

 ! Register query functions.
 ! Do not register a data pointer with the functions;
 ! the global Mesh data structure will be used.
 ierr = Zoltan_Set_Fn(zz, ZOLTAN_GEOM_FN_TYPE, user_return_coords)
 ierr = Zoltan_Set_Fn(zz, ZOLTAN_OBJ_LIST_FN_TYPE,
user_return_owned_nodes)
...
end program

subroutine user_return_owned_nodes(data, &
 num_gid_entries, num_lid_entries, &
 global_ids, local_ids, wgt_dim, obj_wgts, ierr)
use zoltan
use Global_Mesh_Data
integer(Zoltan_INT) :: data(1) ! dummy declaration, do not use
integer(Zoltan_INT), intent(in) :: num_gid_entries, num_lid_entries
integer(Zoltan_INT), intent(out) :: global_ids(*), local_ids(*)
integer(Zoltan_INT), intent(in) :: wgt_dim
real(Zoltan_FLOAT), intent(out) :: obj_wgts(*)
integer(Zoltan_INT), intent(out) :: ierr
integer i
 ! return global node numbers as global_ids.
 ! return index into Nodes array for local_ids.
 do i = 1, Mesh%Number_Owned
 global_ids(1+(i-1)*num_gid_entries) = &
 Mesh%Nodes(i)%Global_ID_Num
 local_ids(1+(i-1)*num_lid_entries) = i
 end do
 ierr = ZOLTAN_OK
end subroutine

subroutine user_return_coords(data, num_gid_entries, num_lid_entries, &
 global_id, local_id, geom_vec, ierr)
use zoltan
use Global_Mesh_Data
integer(Zoltan_INT) :: data(1) ! dummy declaration, do not use
integer(Zoltan_INT), intent(in) :: num_gid_entries, num_lid_entries
integer(Zoltan_INT), intent(in) :: global_id(*), local_id(*)
real(Zoltan_DOUBLE), intent(out) :: geom_vec(*)
integer(Zoltan_INT), intent(out) :: ierr
 ! use local_id to index into the Nodes array.
 geom_vec(1:3) = Mesh%Nodes(local_id(1))%Coordinates
 ierr = ZOLTAN_OK
end subroutine

Zoltan User's Guide: Query-Functon Examples

file:///F|/docs/Zoltan_html/ug_html/ug_examples_query.html (4 of 9) [12/1/2003 12:12:07 PM]

Fortran example of general interface query functions (simplest implementation).

User-Defined Data Pointer Example

In this example, the address of a local mesh data structure is registered with the query functions for use by those
functions. This change eliminates the need for a global mesh data structure in the application. The address of the local
data structure is included as an argument in calls to Zoltan_Set_Fn. This address is then used in
user_return_owned_nodes and user_return_coords to provide data for these routines. It is cast to the Mesh_Type data
type and accessed with local identifiers as in the Basic Example. Differences between this example and the Basic
Example are shown in red.

This model is useful when the application does not have a global data structure that can be accessed by the query
functions. It can also be used for operations on different data structures. For example, if an application had more than
one mesh, load balancing could be performed separately on each mesh without having different query routines for each
mesh. Calls to Zoltan_Set_Fn would define which mesh should be balanced, and the query routines would access the
mesh currently designated by the Zoltan_Set_Fn calls.

/* in application's program file */
#include "zoltan.h"

main()
{
/* declare a local mesh data structure. */
struct Mesh_Type mesh;
...
 /* Indicate that local and global IDs are one integer each. */
 Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1");
 Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", "1");

 /* Register query functions. */
 /* Register the address of mesh as the data pointer. */
 Zoltan_Set_Fn(zz, ZOLTAN_GEOM_FN_TYPE,
 (void (*)()) user_return_coords, &mesh);
 Zoltan_Set_Fn(zz, ZOLTAN_OBJ_LIST_FN_TYPE,
 (void (*)()) user_return_owned_nodes, &mesh);
...
}

void user_return_owned_nodes(void *data,
 int num_gid_entries, int num_lid_entries,
 ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids,
 int wgt_dim, float *obj_wgts,
 int *ierr)
{
int i;
/* cast data pointer to type Mesh_Type. */
struct Mesh_Type *ptr = (struct Mesh_Type *) data;

 /* return global node numbers as global_ids. */
 /* return index into Nodes array for local_ids. */
 for (i = 0; i < ptr->Number_Owned; i++) {
 global_ids[i*num_gid_entries] = ptr->Nodes[i].Global_ID_Num;
 local_ids[i*num_lid_entries] = i;
 }
 *ierr = ZOLTAN_OK;
}

Zoltan User's Guide: Query-Functon Examples

file:///F|/docs/Zoltan_html/ug_html/ug_examples_query.html (5 of 9) [12/1/2003 12:12:07 PM]

void user_return_coords(void *data,
 int num_gid_entries, int num_lid_entries,
 ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
 double *geom_vec, int *ierr)
{

/* cast data pointer to type Mesh_Type. */
struct Mesh_Type *ptr = (struct Mesh_Type *) data;

 /* use local_id to address the requested node. */
 geom_vec[0] = ptr->Nodes[local_id[0]].Coordinates[0];
 geom_vec[1] = ptr->Nodes[local_id[0]].Coordinates[1];
 geom_vec[2] = ptr->Nodes[local_id[0]].Coordinates[2];
 *ierr = ZOLTAN_OK;
}

Example of general interface query functions using the application-defined data pointer.

/* included in file zoltan_user_data.f90 */
! User defined data type as wrapper for Mesh
type Zoltan_User_Data_1
 type(Mesh_type), pointer :: ptr
end type Zoltan_User_Data_1

! in application's program file

program query_example_3
use zoltan
! declare a local mesh data structure and a User_Data to point to it.
type(Mesh_Type), target :: mesh
type(Zoltan_User_Data_1) data
...
 ! Indicate that local and global IDs are one integer each.
 ierr = Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1");
 ierr = Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", "1");

 ! Register query functions.
 ! Use the User_Data variable to pass the mesh data
 data%ptr => mesh
 ierr = Zoltan_Set_Fn(zz, ZOLTAN_GEOM_FN_TYPE, user_return_coords,
data)
 ierr = Zoltan_Set_Fn(zz, ZOLTAN_OBJ_LIST_FN_TYPE,
 user_return_owned_nodes, data)
...
end program

subroutine user_return_owned_nodes(data, &
 num_gid_entries, num_lid_entries, &
 global_ids, local_ids, wgt_dim, obj_wgts, ierr)
use zoltan
type(Zoltan_User_Data_1) :: data
integer(Zoltan_INT), intent(in) :: num_gid_entries, num_lid_entries
integer(Zoltan_INT), intent(out) :: global_ids(*), local_ids(*)
integer(Zoltan_INT), intent(in) :: wgt_dim
real(Zoltan_FLOAT), intent(out) :: obj_wgts(*)
integer(Zoltan_INT), intent(out) :: ierr
integer i

Zoltan User's Guide: Query-Functon Examples

file:///F|/docs/Zoltan_html/ug_html/ug_examples_query.html (6 of 9) [12/1/2003 12:12:08 PM]

type(Mesh_Type), pointer :: Mesh

 ! extract the mesh from the User_Data argument
 Mesh => data%ptr

 ! return global node numbers as global_ids.
 ! return index into Nodes array for local_ids.
 do i = 1, Mesh%Number_Owned
 global_ids(1+(i-1)*num_gid_entries) = &
 Mesh%Nodes(i)%Global_ID_Num
 local_ids(1+(i-1)*num_lid_entries) = i
 end do
 ierr = ZOLTAN_OK
end subroutine

subroutine user_return_coords(data, global_id, local_id, &
 geom_vec, ierr)
use zoltan
type(Zoltan_User_Data_1) :: data
integer(Zoltan_INT), intent(in) :: num_gid_entries, num_lid_entries
integer(Zoltan_INT), intent(in) :: global_id(*), local_id(*)
real(Zoltan_DOUBLE), intent(out) :: geom_vec(*)
integer(Zoltan_INT), intent(out) :: ierr
type(Mesh_Type), pointer :: Mesh

 ! extract the mesh from the User_Data argument
 Mesh => data%ptr

 ! use local_id to index into the Nodes array.
 geom_vec(1:3) = Mesh%Nodes(local_id(1))%Coordinates
 ierr = ZOLTAN_OK
end subroutine

Fortran example of general interface query functions using the application-defined data pointer.

Migration Examples

Packing and Unpacking Data

Simple migration query functions for the Basic Example are included below. These functions are used by the migration
tools to move nodes among the processors. The functions user_size_node, user_pack_node, and user_unpack_node are
registered through calls to Zoltan_Set_Fn. Query function user_size_node returns the size (in bytes) of data representing
a single node. Query function user_pack_node copies a given node's data into the communication buffer buf. Query
function user_unpack_node copies a data for one node from the communication buffer buf into the Mesh.Nodes array on
its new processor.

These query routines are simple because the application does not dynamically allocate memory for each node. Such
dynamic allocation would have to be accounted for in the ZOLTAN_OBJ_SIZE_FN, ZOLTAN_PACK_OBJ_FN, and
ZOLTAN_UNPACK_OBJ_FN routines.

Zoltan User's Guide: Query-Functon Examples

file:///F|/docs/Zoltan_html/ug_html/ug_examples_query.html (7 of 9) [12/1/2003 12:12:08 PM]

main()
{
...
 /* Register migration query functions. */
 /* Do not register a data pointer with the functions; */
 /* the global Mesh data structure will be used. */
 Zoltan_Set_Fn(zz, ZOLTAN_OBJ_SIZE_FN_TYPE,
 (void (*)()) user_size_node, NULL);
 Zoltan_Set_Fn(zz, ZOLTAN_PACK_OBJ_FN_TYPE,
 (void (*)()) user_pack_node, NULL);
 Zoltan_Set_Fn(zz, ZOLTAN_UNPACK_OBJ_FN_TYPE,
 (void (*)()) user_unpack_node, NULL);
...
}

int user_size_node(void *data,
 int num_gid_entries, int num_lid_entries,
 ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, int *ierr)
{
/* Return the size of data associated with one node. */
/* This case is simple because all nodes have the same size. */
 *ierr = ZOLTAN_OK;
 return(sizeof(struct Node_Type));
}

void user_pack_node(void *data,
 int num_gid_entries, int num_lid_entries,
 ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
 int dest_proc, int size, char *buf, int *ierr)
{
/* Copy the specified node's data into buffer buf. */
struct Node_Type *node_buf = (struct Node_Type *) buf;

 *ierr = ZOLTAN_OK;
 node_buf->Coordinates[0] = Mesh.Nodes[local_id[0]].Coordinates[0];
 node_buf->Coordinates[1] = Mesh.Nodes[local_id[0]].Coordinates[1];
 node_buf->Coordinates[2] = Mesh.Nodes[local_id[0]].Coordinates[2];
 node_buf->Global_ID_Num = Mesh.Nodes[local_id[0]].Global_ID_Num;
}

void user_unpack_node(void *data, int num_gid_entries,
 ZOLTAN_ID_PTR global_id, int size,
 char *buf, int *ierr)
{
/* Copy the node data in buf into the Mesh data structure. */
int i;
struct Node_Type *node_buf = (struct Node_Type *) buf;

 *ierr = ZOLTAN_OK;
 i = Mesh.Number_Owned;
 Mesh.Number_Owned = Mesh.Number_Owned + 1;
 Mesh.Nodes[i].Coordinates[0] = node_buf->Coordinates[0];
 Mesh.Nodes[i].Coordinates[1] = node_buf->Coordinates[1];
 Mesh.Nodes[i].Coordinates[2] = node_buf->Coordinates[2];
 Mesh.Nodes[i].Global_ID_Num = node_buf->Global_ID_Num;
}

Example of migration query functions for the Basic Example.

Zoltan User's Guide: Query-Functon Examples

file:///F|/docs/Zoltan_html/ug_html/ug_examples_query.html (8 of 9) [12/1/2003 12:12:08 PM]

[Table of Contents | Next: FORTRAN Interface | Previous: Migration Examples]

Zoltan User's Guide: Query-Functon Examples

file:///F|/docs/Zoltan_html/ug_html/ug_examples_query.html (9 of 9) [12/1/2003 12:12:08 PM]

Zoltan User's Guide | Next | Previous

FORTRAN Interface

The Fortran interface for Zoltan is a Fortran 90 interface designed similar to the Fortran 90 Bindings for OpenGL
[Mitchell]. There is no FORTRAN 77 interface; however, FORTRAN 77 applications can use Zoltan by adding only a
few Fortran 90 statements, which are fully explained in the section on FORTRAN 77, provided that vendor-specific
extensions are not heavily used in the application. This section describes how to build the Fortran interface into the Zoltan
library, how to call Zoltan from Fortran applications, and how to compile Fortran applications that use Zoltan. Note that
the capitalization used in this section is for clarity and need not be adhered to in the application code, since Fortran is case
insensitive.

Compiling Zoltan
Compiling Applications
FORTRAN API
FORTRAN 77
System Specific Remarks

[Table of Contents | Next: FORTRAN--Compiling Zoltan | Previous: Query-Function Examples

Zoltan User's Guide: FORTRAN Interface

file:///F|/docs/Zoltan_html/ug_html/ug_fortran.html [12/1/2003 12:12:08 PM]

Zoltan User's Guide | Next | Previous

FORTRAN: Compiling Zoltan

To include the Fortran interface in the Zoltan library, use the YES_FORTRAN parameter in the make statement; for
example

gmake YES_FORTRAN=1 ZOLTAN_ARCH=<platform> zoltan

Before compiling the library, make sure that the application's zoltan_user_data.f90 has been placed in the Zoltan/fort/
directory.

[Table of Contents | Next: FORTRAN--Compiling Applications | Previous: FORTRAN Interface]

Zoltan User's Guide: FORTRAN -- Compiling Zoltan

file:///F|/docs/Zoltan_html/ug_html/ug_fortran_zoltan.html [12/1/2003 12:12:08 PM]

Zoltan User's Guide | Next | Previous

FORTRAN: Compiling Applications

To compile a Fortran application using the Zoltan library, the module information files must be made available to most
compilers during the compilation phase. Module information files are files generated by the compiler to provide module
information to program units that USE the module. They usually have suffixes like .mod or .M. The module information
files for the modules in the Zoltan library are located in the Obj_<platform> subdirectory. Most Fortran 90 compilers
have a compile line flag to specify directories to be searched for module information files, typically "-I"; check the
documentation for your compiler. If your compiler does not have such a flag, you will have to copy the module
information files to the directory of the application (or use symbolic links).

The Fortran interface is built into the same library file as the rest of Zoltan, which is found during the compiler link phase
with -lzoltan. Thus an example compilation line would be

f90 -I<path to Zoltan>/Obj_<platform> application.f90 -lzoltan

[Table of Contents | Next: FORTRAN API | Previous: FORTRAN--Compiling Zoltan

Zoltan User's Guide: FORTRAN--Compiling Applications

file:///F|/docs/Zoltan_html/ug_html/ug_fortran_apps.html [12/1/2003 12:12:08 PM]

Zoltan User's Guide | Next | Previous

FORTRAN API

The Fortran interface for each Zoltan Interface Function and Application-Registered Query Function is given along with
the C interface. This section contains some general information about the design and use of the Fortran interface.

Names
Zoltan module
Numeric types
Structures
Global and local IDs
Query function data

Names

All procedure, variable, defined constant and structure names are identical to those in the C interface, except that in
Fortran they are case insensitive (either upper or lower case letters can be used).

Zoltan module

MODULE zoltan provides access to all entities in Zoltan that are of use to the application, including kind type parameters,
named constants, procedures, and derived types. Any program unit (e.g., main program, module, external subroutine) that
needs access to an entity from Zoltan must contain the statement

USE zoltan

near the beginning.

Numeric types

The correspondence between Fortran and C numeric types is achieved through the use of kind type parameters. In most
cases, the default kind for a Fortran type will match the corresponding C type, but this is not guaranteed. To insure
portability of the application code, it is highly recommended that the following kind type parameters be used in the
declaration of all variables and constants that will be passed to a Zoltan procedure:

C Fortran

int INTEGER(KIND=Zoltan_INT)

float REAL(KIND=Zoltan_FLOAT)

double REAL(KIND=Zoltan_DOUBLE)

Note that "KIND=" is optional in declaration statements. The kind number for constants can be attached to the constant,
e.g., 1.0_Zoltan_DOUBLE.

Structures

For any struct in the C interface to Zoltan, e.g. Zoltan_Struct, there is a corresponding derived type in the Fortran
interface. Variables of this type are declared as demonstrated below:

TYPE(Zoltan_Struct) :: zz

In the Fortran interface, the internal components of the derived type are PRIVATE and not accessible to the application.
However, the application simply passes these variables around, and never needs to access the internal components.

Zoltan User's Guide: FORTRAN API

file:///F|/docs/Zoltan_html/ug_html/ug_fortran_api.html (1 of 2) [12/1/2003 12:12:09 PM]

file:///F|/docs/Zoltan_html/dev_html/dev_lb_structs.html#Zoltan_Struct

Global and local IDs

While the C implementation uses arrays of unsigned integers to represent global and local IDs, the Fortran interface uses
arrays of integers, as unsigned integers are not available in Fortran. Thus, each ID is represented as an array (possibly of
size 1) of integers. Applications that use other data types for their IDs can convert between their data types and Zoltan's in
the application-registered query functions.

Query function data

Zoltan_Set_Fn allows the application to pass a pointer to data that will subsequently be passed to the query function
being registered. From Fortran this is an optional argument, or can be one of several types. In the simplest cases, an
intrinsic array containing the data will be sufficient. For these cases, data can be an assumed size array of type
INTEGER(Zoltan_INT), REAL(Zoltan_FLOAT) or REAL(Zoltan_DOUBLE). When the argument is omitted in the call
to the registration function, a data argument will still be passed to the query function. This should be declared as an
assumed size array of type INTEGER(Zoltan_INT) and never used.

For more complicated situations, the application may need to pass data in a user-defined type. The strong type checking of
Fortran does not allow passing an arbitrary type without modifying the Fortran interface for each desired type. So the
Fortran interface provides a type to be used for this purpose, Zoltan_User_Data_1. Since different types of data may
need to be passed to different query functions, four such types are provided, using the numerals 1, 2, 3 and 4 as the last
character in the name of the type. These types are defined by the application in zoltan_user_data.f90. If not needed, they
must be defined, but can be almost empty as in fort/zoltan_user_data.f90.

The application may use these types in any appropriate way. If desired, it can define these types to contain the
application's data and use the type throughout the application. But it is anticipated that in most cases, the desired type
already exists in the application, and the Zoltan_User_Data_x types will be used as "wrapper types," containing one or
more pointers to the existing types. For example,

TYPE mesh

! an existing data type with whatever defines a mesh

END TYPE mesh

TYPE Zoltan_User_Data_2

TYPE(mesh), POINTER :: ptr

END TYPE Zoltan_User_Data_2

The application would then set the pointer to the data before calling Zoltan_Set_Fn:

TYPE(mesh) :: meshdata
TYPE(Zoltan_User_Data_2) :: query_data
TYPE(Zoltan_Struct) :: zz
INTEGER(Zoltan_INT), EXTERNAL :: num_obj_func ! not required for module procedures

query_data%ptr => meshdata
ierr = Zoltan_Set_Fn(zz,ZOLTAN_NUM_OBJ_FN_TYPE,num_obj_func,query_data)

Note that the existing data type must be available when Zoltan_User_Data_x is defined. Therefore it must be defined
either in zoltan_user_data.f90 or in a module that is compiled before zoltan_user_data.f90 and USEd by MODULE
zoltan_user_data. For an example that uses a wrapper type, see fdriver/zoltan_user_data.f90.

[Table of Contents | Next: FORTRAN 77 | Previous: FORTRAN--Compiling Applications

Zoltan User's Guide: FORTRAN API

file:///F|/docs/Zoltan_html/ug_html/ug_fortran_api.html (2 of 2) [12/1/2003 12:12:09 PM]

Zoltan User's Guide | Next | Previous

FORTRAN 77

There is no FORTRAN 77 interface for Zoltan; however, an existing FORTRAN 77 application can be compiled by a
Fortran 90 compiler provided it does not use vendor specific extensions (unless the same extensions are supported by the
Fortran 90 compiler), and the application can use Zoltan's Fortran 90 interface with a minimal amount of Fortran 90
additions. This section provides details of the Fortran 90 code that must be added.

When building the Zoltan library, use the file fort/zoltan_user_data.f90 for zoltan_user_data.f90. This assumes that
DATA in a call to ZOLTAN_SET_FN is either omitted (you can omit arguments that are labeled OPTIONAL in the
Fortran API) or an array of type INTEGER, REAL or DOUBLE PRECISION (REAL*4 and REAL*8 might be
acceptable). If a more complicated set of data is required (for example, two arrays), then it should be made available to the
query functions through COMMON blocks.

To get access to the interface, each program unit (main program, subroutine or function) that calls a Zoltan routine must
begin with the statement

USE ZOLTAN

and this should be the first statement after the program, subroutine or function statement (before the declarations).

The pointer to the Zoltan structure returned by ZOLTAN_CREATE should be declared as

TYPE(ZOLTAN_STRUCT), POINTER :: ZZ

(you can use a name other than ZZ if you wish).

To create the structure, use a pointer assignment statement with the call to ZOLTAN_CREATE:

ZZ => ZOLTAN_CREATE(COMMUNICATOR)

Note that the assignment operator is "=>". If ZZ is used in more than one procedure, then put it in a COMMON block. It
cannot be passed as an argument unless the procedure interfaces are made "explicit." (Let's not go there.)

The eight import and export arrays passed to ZOLTAN_LB_PARTITION (and other procedures) must be pointers. They
should be declared as, for example,

INTEGER, POINTER :: IMPORT_GLOBAL_IDS(:)

Note that the double colon after POINTER is required, and the dimension must be declared as "(:)" with a colon. Like ZZ,
if they are used in more than one procedure, pass them through a COMMON block, not as an argument.

Except in the unlikely event that the default kinds of intrinsic types do not match the C intrinsic types, you do not have to
use the kind type parameters Zoltan_INT, etc. It is also not necessary to include the INTENT attribute in the declarations
of the query functions, so they can be simplified to, for example,

SUBROUTINE GET_OBJ_LIST(DATA, GLOBAL_IDS, LOCAL_IDS, WGT_DIM, OBJ_WGTS, IERR)
INTEGER DATA(*),GLOBAL_IDS(*),LOCAL_IDS(*),WGT_DIM,IERR
REAL OBJ_WGTS(*)

to be more consistent with a FORTRAN 77 style.

[Table of Contents | Next: FORTRAN--System-Specific Remarks | Previous: FORTRAN API

Zoltan User's Guide: FORTRAN 77

file:///F|/docs/Zoltan_html/ug_html/ug_fortran_77.html [12/1/2003 12:12:09 PM]

Zoltan User's Guide | Next | Previous

FORTRAN: System-Specific Remarks

System-specific details of the FORTRAN interface are included below.

The mention of specific products, trademarks, or brand names is for purposes of identification only.
Such mention is not to be interpreted in any way as an endoresement or certification of such products
or brands by the National Institute of Standards and Technology or Sandia National Laboratories. All
trademarks mentioned herein belong to their respective owners.

MPICH
Pacific Sierra
NASoftware

MPICH

As of version 1.1.2, the MPICH implementation of MPI is not completely "Fortran 90 friendly." Only one problem was
encountered during our tests: the reliance on command line arguments. MPICH uses command line arguments during the
start-up process, even if the application does not. Command line arguments are not standard in Fortran, so although most
compilers offer it as an extension, each compiler has its own method of handling them. The problem arises when one
Fortran compiler is specified during the build of MPICH and another Fortran compiler is used for the application. This
should not be a problem on systems where there is only one Fortran compiler, or where multiple Fortran compilers are
compatible (for example, FORTRAN 77 and Fortran 90 compilers from the same vendor). If your program can get past
the call to MPI_Init, then you do not have this problem.

To solve this problem, build MPICH in such a way that it does not include the routines for iargc and getarg (I have been
able to do this by using the -f95nag flag when configuring MPICH), and then provide your own versions of them when
you link the application. Some versions of these routines are provided in fdriver/farg_*.

Pacific Sierra

Pacific Sierra Research (PSR) Vastf90 is not currently supported due to bugs in the compiler with no known workarounds.
It is not known when or if this compiler will be supported.

NASoftware

N.A.Software FortranPlus is not currently supported due to problems with the query functions. We anticipate that this
problem can be overcome, and support will be added soon.

[Table of Contents | Next: Backward Compatibility | Previous: FORTRAN 77

Zoltan User's Guide: FORTRAN--System-Specific Remarks

file:///F|/docs/Zoltan_html/ug_html/ug_fortran_sys.html [12/1/2003 12:12:09 PM]

Zoltan User's Guide | Next | Previous

Backward Compatibility with Previous Versions of Zoltan

As new features have been added to Zoltan, backward compatibility with previous versions of Zoltan has been
maintained. Thus, users of previous versions of Zoltan can upgrade to a new version without changing their application
source code. Modifications to application source code are needed only if the applications use new Zoltan functionality.

Enhancements to the Zoltan interface are described below.

Versions 1.5 and higher
Versions 1.3 and higher

Backward Compatibility: Versions 1.5 and higher

The ability to generate more partitions than processors was added to Zoltan in version 1.5. Thus, Zoltan's partitioning and
migration routines were enhanced to return and use both partition assignments and processor assignments. New interface
and query functions were added to support this additional information. All former Zoltan parameters apply to the new
functions as they did to the old; new parameters NUM_GLOBAL_PARTITIONS and NUM_LOCAL_PARTITIONS apply
only to the new functions.

The table below lists the Zoltan function that uses both partition and processor information, along with the analogous
function that returns only processor information. Applications requiring only one partition per processor can use either
version of the functions.

Function with Partition and Processor info (v1.5 and
higher)

Function with only Processor info (v1.3 and
higher)

Zoltan_LB_Partition Zoltan_LB_Balance

Zoltan_LB_Point_PP_Assign Zoltan_LB_Point_Assign

Zoltan_LB_Box_PP_Assign Zoltan_LB_Box_Assign

Zoltan_Invert_Lists Zoltan_Compute_Destinations

Zoltan_Migrate Zoltan_Help_Migrate

ZOLTAN_PRE_MIGRATE_PP_FN ZOLTAN_PRE_MIGRATE_FN

ZOLTAN_MID_MIGRATE_PP_FN ZOLTAN_MID_MIGRATE_FN

ZOLTAN_POST_MIGRATE_PP_FN ZOLTAN_POST_MIGRATE_FN

To continue using the v1.3 partition functions, no changes to C or Fortran90 applications are needed. Zoltan interfaces
from versions earlier than 1.3 are also still supported (see below), requiring no changes to application programs.

To use the new v1.5 partitioning functions:

C users must include file zoltan.h in their applications and edit their applications to use the appropriate new
functions.

●

Fortran90 users must put user-defined data types in zoltan_user_data.f90 and edit their applications to use the
appropriate new functions. The new partitioning functions do not work with user-defined data types in
lb_user_const.f90.

●

Zoltan User's Guide: Backward Compatilibity

file:///F|/docs/Zoltan_html/ug_html/ug_backward.html (1 of 3) [12/1/2003 12:12:10 PM]

Backward Compatibility: Versions 1.3 and higher

Versions of Zoltan before version 1.3 used a different naming convention for the Zoltan interface and query functions. All
functions in Zoltan v.1.3 and above are prefixed with Zoltan_; earlier versions were prefixed with LB_.

Zoltan versions 1.3 and above maintain backward compatibility with the earlier Zoltan interface. Thus, applications
that used earlier versions of Zoltan can continue using Zoltan without changing their source code.

Only two changes are needed to build the application with Zoltan v.1.3 and higher:

All Zoltan include files are now in directory Zoltan/include. Thus, application include paths must point to this
directory.
(Previously, include files were in Zoltan/lb.)

●

Applications link with Zoltan now by specifying only -lzoltan.
(Previously, applications had to link with -lzoltan -lzoltan_comm -lzoltan_mem.)

●

While it is not necessary for application developers to modify their source code to use Zoltan v.1.3 and above, those who
want to update their source code should do the following in their application source files:

Replace Zoltan calls and constants (LB_*) with new names. The new names can be found through the index
below.

●

C programs: Include file zoltan.h instead of lbi_const.h.●

F90 programs: Put user-defined data types in file zoltan_user_data.f90 instead of lb_user_const.f90.●

Backward Compatilibity Index for Interface and Query Functions

Name in Earlier Zoltan Versions Name in Zoltan Version 1.3 and higher

LB_BORDER_OBJ_LIST_FN ZOLTAN_BORDER_OBJ_LIST_FN

LB_Balance Zoltan_LB_Balance

LB_Box_Assign Zoltan_LB_Box_Assign

LB_CHILD_LIST_FN ZOLTAN_CHILD_LIST_FN

LB_CHILD_WEIGHT_FN ZOLTAN_CHILD_WEIGHT_FN

LB_COARSE_OBJ_LIST_FN ZOLTAN_COARSE_OBJ_LIST_FN

LB_Compute_Destinations Zoltan_Compute_Destinations

LB_Create Zoltan_Create

LB_Destroy Zoltan_Destroy

LB_EDGE_LIST_FN ZOLTAN_EDGE_LIST_FN

LB_Eval Zoltan_LB_Eval

LB_FIRST_BORDER_OBJ_FN ZOLTAN_FIRST_BORDER_OBJ_FN

LB_FIRST_COARSE_OBJ_FN ZOLTAN_FIRST_COARSE_OBJ_FN

Zoltan User's Guide: Backward Compatilibity

file:///F|/docs/Zoltan_html/ug_html/ug_backward.html (2 of 3) [12/1/2003 12:12:10 PM]

LB_FIRST_OBJ_FN ZOLTAN_FIRST_OBJ_FN

LB_Free_Data Zoltan_LB_Free_Data

LB_GEOM_FN ZOLTAN_GEOM_FN

LB_Help_Migrate Zoltan_Help_Migrate

LB_Initialize Zoltan_Initialize

LB_MID_MIGRATE_FN ZOLTAN_MID_MIGRATE_FN

LB_NEXT_BORDER_OBJ_FN ZOLTAN_NEXT_BORDER_OBJ_FN

LB_NEXT_COARSE_OBJ_FN ZOLTAN_NEXT_COARSE_OBJ_FN

LB_NEXT_OBJ_FN ZOLTAN_NEXT_OBJ_FN

LB_NUM_BORDER_OBJ_FN ZOLTAN_NUM_BORDER_OBJ_FN

LB_NUM_CHILD_FN ZOLTAN_NUM_CHILD_FN

LB_NUM_COARSE_OBJ_FN ZOLTAN_NUM_COARSE_OBJ_FN

LB_NUM_EDGES_FN ZOLTAN_NUM_EDGES_FN

LB_NUM_GEOM_FN ZOLTAN_NUM_GEOM_FN

LB_NUM_OBJ_FN ZOLTAN_NUM_OBJ_FN

LB_OBJ_LIST_FN ZOLTAN_OBJ_LIST_FN

LB_OBJ_SIZE_FN ZOLTAN_OBJ_SIZE_FN

LB_PACK_OBJ_FN ZOLTAN_PACK_OBJ_FN

LB_POST_MIGRATE_FN ZOLTAN_POST_MIGRATE_FN

LB_PRE_MIGRATE_FN ZOLTAN_PRE_MIGRATE_FN

LB_Point_Assign Zoltan_LB_Point_Assign

LB_Set_Fn Zoltan_Set_Fn

LB_Set_<lb_fn_type>_Fn Zoltan_Set_<zoltan_fn_type>_Fn

LB_Set_Method Zoltan_Set_Param with parameter LB_METHOD

LB_Set_Param Zoltan_Set_Param

LB_UNPACK_OBJ_FN ZOLTAN_UNPACK_OBJ_FN

[Table of Contents | Next: References | Previous: Fortran--System-Specific Remarks]

Zoltan User's Guide: Backward Compatilibity

file:///F|/docs/Zoltan_html/ug_html/ug_backward.html (3 of 3) [12/1/2003 12:12:10 PM]

Zoltan User's Guide | Next | Previous

References

"ALEGRA -- A Framework for Large Strain Rate Physics."
http://sherpa.sandia.gov/9231home/alegra/alegra-frame.html

1.

S. Attaway, T. Barragy, K. Brown, D. Gardner, B. Hendrickson, S. Plimpton and C. Vaughan. "Transient Solid
Dynamics Simulations on the Sandia/Intel Teraflop Computer." Proceedings of SC'97, San Jose, CA, November,
1997. (Finalist for the Gordon Bell Prize.)

2.

P. Baehmann, S. Wittchen, M. Shephard, K. Grice, and M. Yerry. "Robust geometrically based automatic
two-dimensional mesh generation." Intl. J. Numer. Meths. Engrg., 24 (1987) 1043-1078.

3.

M. Berger and S. Bokhari. "A partitioning strategy for nonuniform problems on multiprocessors." IEEE Trans.
Computers, C-36 (1987) 570-580.

4.

K. Devine, G. Hennigan, S. Hutchinson, A. Salinger, J. Shadid, and R. Tuminaro. "High Performance MP
Unstructured Finite Element Simulation of Chemically Reacting Flows." Proceedings of SC'97, San Jose, CA,
November, 1997. (Finalist for the Gordon Bell Prize.)

5.

H.C. Edwards. A parallel infrastructure for scalable adaptive finite element methods and its application to least
squares C^(inf) collocation. Ph.D. Dissertation, Univ. of Texas at Austin, May, 1997.

6.

J. Flaherty, R. Loy, M. Shephard, B. Szymanski, J. Teresco and L. Ziantz. "Adaptive local refinement with octree
load-balancing for the parallel solution of three-dimensional conservation laws." J. Parallel Distrib. Comput., 47
(1998) 139-152.

7.

L. Gervasio. "Final Report." Summer project report, Internal Memo, Department 9103, Sandia National
Laboratories, August, 1998.

8.

B. Hendrickson and K. Devine. "Dynamic load balancing in computational mechanics." Comp. Meth. Appl. Mech.
Engrg., v. 184 (#2-4), p. 485-500, 2000.

9.

B. Hendrickson and R. Leland. "The Chaco user's guide, version 2.0." Tech. Rep. SAND 94-2692, Sandia
National Laboratories, Albuquerque, NM, October, 1994. http://www.cs.sandia.gov/CRF/chac.html

10.

G. Karypis and V. Kumar. "ParMETIS: Parallel graph partitioning and sparse matrix ordering library." Tech. Rep.
97-060, Department of Computer Science, Univ. of Minnesota, 1997.
http://www-users.cs.umn.edu/~karypis/metis/parmetis/

11.

R. Loy. Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional
conservation laws. Ph. D. Dissertation, Dept. of Computer Science, Rensselaer Polytechnic Institute, May 1998.

12.

S. Mitchell and S. Vavasis. "Quality mesh generation in three dimensions." Proc. 8th ACM Symposium on
Computational Geometry, ACM (1992) 212-221.

13.

W. F. Mitchell. "A Fortran 90 Interface for OpenGL: Revised January 1998" NISTIR 6134 (1998).
http://math.nist.gov/~mitchell/papers/nistir6134.ps.gz

14.

W. F. Mitchell. "The K-way Refinement Tree Partitioning Method for Adaptive Grids."
http://math.nist.gov/~mitchell/papers/parcomp.ps.gz

15.

"MPSalsa: Massively Parallel Numerical Methods for Advanced Simulation of Chemically Reacting Flows."
http://www.cs.sandia.gov/CRF/MPSalsa/

16.

A. Patra and J. T. Oden. "Problem decomposition for adaptive hp-finite element methods." J. Computing Systems
in Engrg., 6 (1995).

17.

J. Pilkington and S. Baden. "Partitioning with space-filling curves." Tech. Rep. CS94-349, Dept. of Computer
Science and Engineering, Univ. of California, San Diego, CA, 1994.

18.

M. Shephard and M. Georges. "Automatic three-dimensional mesh generation by the finite octree technique." Intl.
J. Numer. Meths. Engrg., 32 (1991) 709-749.

19.

V. E. Taylor and B.Nour-Omid. "A Study of the Factorization Fill-in for a Parallel Implementation of the Finite
Element Method." Intl. J. Numer. Meths. Engrg., 37 (1994) 3809-3823.

20.

Zoltan User's Guide: References

file:///F|/docs/Zoltan_html/ug_html/ug_refs.html (1 of 2) [12/1/2003 12:12:11 PM]

http://sherpa.sandia.gov/9231home/alegra/alegra-frame.html
http://www.cs.sandia.gov/CRF/chac.html
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://math.nist.gov/~mitchell/papers/nistir6134.ps.gz
http://math.nist.gov/~mitchell/papers/parcomp.ps.gz
http://www.cs.sandia.gov/CRF/MPSalsa/

C. Walshaw. "JOSTLE mesh partitioning software", http://www.gre.ac.uk/jostle/21.

C. Walshaw, M. Cross, and M. Everett. "Parallel Dynamic Graph Partitioning for Adaptive Unstructured
Meshes", J. Par. Dist. Comp., 47(2) 102-108, 1997.

22.

M. Warren and J. Salmon. "A parallel hashed octree n-body algorithm." Proc. Supercomputing `93, Portland, OR,
November 1993.

23.

[Table of Contents | Next: Index of Interface and Query Functions | Previous: Backward Compatibility]

Zoltan User's Guide: References

file:///F|/docs/Zoltan_html/ug_html/ug_refs.html (2 of 2) [12/1/2003 12:12:11 PM]

http://www.gre.ac.uk/jostle/

Zoltan User's Guide | Previous

Index of Interface and Query Functions

ZOLTAN_BORDER_OBJ_LIST_FN
ZOLTAN_CHILD_LIST_FN
ZOLTAN_CHILD_WEIGHT_FN
ZOLTAN_COARSE_OBJ_LIST_FN
Zoltan_Compute_Destinations
Zoltan_Create
Zoltan_Destroy
ZOLTAN_EDGE_LIST_FN
ZOLTAN_EDGE_LIST_MULTI_FN
ZOLTAN_FIRST_BORDER_OBJ_FN
ZOLTAN_FIRST_COARSE_OBJ_FN
ZOLTAN_FIRST_OBJ_FN
ZOLTAN_GEOM_FN
ZOLTAN_GEOM_MULTI_FN
Zoltan_Help_Migrate
Zoltan_Initialize
Zoltan_Invert_Lists
Zoltan_LB_Balance
Zoltan_LB_Box_Assign
Zoltan_LB_Box_PP_Assign
Zoltan_LB_Eval
Zoltan_LB_Free_Data
Zoltan_LB_Partition
Zoltan_LB_Point_Assign
Zoltan_LB_Point_PP_Assign
Zoltan_LB_Set_Part_Sizes
ZOLTAN_MID_MIGRATE_FN
ZOLTAN_MID_MIGRATE_PP_FN
Zoltan_Migrate
ZOLTAN_NEXT_BORDER_OBJ_FN
ZOLTAN_NEXT_COARSE_OBJ_FN
ZOLTAN_NEXT_OBJ_FN
ZOLTAN_NUM_BORDER_OBJ_FN
ZOLTAN_NUM_CHILD_FN
ZOLTAN_NUM_COARSE_OBJ_FN
ZOLTAN_NUM_EDGES_FN
ZOLTAN_NUM_EDGES_MULTI_FN
ZOLTAN_NUM_GEOM_FN
ZOLTAN_NUM_OBJ_FN
ZOLTAN_OBJ_LIST_FN
ZOLTAN_OBJ_SIZE_FN
Zoltan_Order
ZOLTAN_PACK_OBJ_FN
ZOLTAN_PARTITION_FN
ZOLTAN_PARTITION_MULTI_FN

Zoltan User's Guide: Index

file:///F|/docs/Zoltan_html/ug_html/ug_index.html (1 of 2) [12/1/2003 12:12:11 PM]

ZOLTAN_POST_MIGRATE_FN
ZOLTAN_POST_MIGRATE_PP_FN
ZOLTAN_PRE_MIGRATE_FN
ZOLTAN_PRE_MIGRATE_PP_FN
Zoltan_Set_Fn
Zoltan_Set_<zoltan_fn_type>_Fn
Zoltan_Set_Param
ZOLTAN_UNPACK_OBJ_FN

[Table of Contents | Previous: References | Zoltan Home Page]

Zoltan User's Guide: Index

file:///F|/docs/Zoltan_html/ug_html/ug_index.html (2 of 2) [12/1/2003 12:12:11 PM]

file:///F|/docs/Zoltan_html/Zoltan.html

	Local Disk
	Zoltan User's Guide
	Zoltan User's Guide: Introduction
	Zoltan User's Guide: Release Notes
	Zoltan User's Guide: Library Usage
	Zoltan User's Guide: Interface
	Zoltan User's Guide: General Zoltan Interface
	Zoltan User's Guide: Load-Balancing Interface
	Zoltan User's Guide: Augmenting a Decomposition
	Zoltan User's Guide: Migration Interface
	Zoltan User's Guide: Ordering Interface
	Zoltan User's Guide: Query Functions
	Zoltan User's Guide: General Zoltan Query Functions
	Zoltan User's Guide: Migration Query Functions
	Zoltan User's Guide: Algorithms
	Zoltan User's Guide: Algorithms
	Zoltan User's Guide: RCB
	Zoltan User's Guide: RIB
	Zoltan User's Guide: HSFC
	Zoltan User's Guide: Refinement Tree Based Partition
	Zoltan User's Guide: ParMETIS Interface
	Zoltan User's Guide: Jostle Interface
	Zoltan User's Guide: Octree Partitioning
	Zoltan User's Guide: Ordering Algorithms
	Zoltan User's Guide: Nested Dissection by ParMETIS
	Zoltan User's Guide: Data Services
	Zoltan User's Guide: Memory Management Utilities
	Zoltan User's Guide: Communication Utilities
	Zoltan User's Guide: Memory Management Utilities
	Zoltan User's Guide: Examples
	Zoltan User's Guide: General Usage Examples
	Zoltan User's Guide: Load-Balancing Examples
	Zoltan User's Guide: Migration Examples
	Zoltan User's Guide: Query-Functon Examples
	Zoltan User's Guide: FORTRAN Interface
	Zoltan User's Guide: FORTRAN -- Compiling Zoltan
	Zoltan User's Guide: FORTRAN--Compiling Applications
	Zoltan User's Guide: FORTRAN API
	Zoltan User's Guide: FORTRAN 77
	Zoltan User's Guide: FORTRAN--System-Specific Remarks
	Zoltan User's Guide: Backward Compatilibity
	Zoltan User's Guide: References
	Zoltan User's Guide: Index

